LEADER 01115nam--2200361---450- 001 990002832830203316 005 20090723174150.0 010 $a88-244-8010-1 035 $a000283283 035 $aUSA01000283283 035 $a(ALEPH)000283283USA01 035 $a000283283 100 $a20061107d2005----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay|||n|||001yy 200 1 $a<> codice del consumo$ela tutela del consumatore dopo il D.Lgs. 6 settembre 2005, n. 206$fRosanna Cafaro 210 $aNapoli$cEdizioni giuridiche Simone$dstampa 2005 215 $a238 p.$d21 cm 225 2 $aBussola$v143 410 0$12001$aBussola$v143 606 0 $aConsumatori$xTutela$xLegislazione 676 $a343.45071 700 1$aCAFARO,$bRosanna$0280817 801 0$aIT$bsalbc$gISBD 912 $a990002832830203316 951 $aXXV.1.H 449 (IG II 1207)$b50442 G.$cXXV.1.H 449 (IG II)$d00208846 959 $aBK 969 $aGIU 979 $aANNAMARIA$b90$c20061107$lUSA01$h0949 979 $aRSIAV1$b90$c20090723$lUSA01$h1741 996 $aCodice del consumo$9993703 997 $aUNISA LEADER 05213nam 2200625 450 001 9910460992403321 005 20200520144314.0 010 $a1-118-90934-8 010 $a1-118-90938-0 035 $a(CKB)3710000000437522 035 $a(EBL)1895138 035 $a(SSID)ssj0001515187 035 $a(PQKBManifestationID)12599629 035 $a(PQKBTitleCode)TC0001515187 035 $a(PQKBWorkID)11480673 035 $a(PQKB)11724984 035 $a(MiAaPQ)EBC1895138 035 $a(DLC) 2015017588 035 $a(Au-PeEL)EBL1895138 035 $a(CaPaEBR)ebr11071165 035 $a(CaONFJC)MIL804075 035 $a(OCoLC)908287142 035 $a(EXLCZ)993710000000437522 100 $a20150710h20162016 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinuum mechanics $ethe birthplace of mathematical models /$fMyron B. Allen 210 1$aHoboken, New Jersey :$cWiley,$d2016. 210 4$dİ2016 215 $a1 online resource (293 p.) 300 $aDescription based upon print version of record. 311 $a1-118-90937-2 320 $aIncludes bibliographical refererences and index. 327 $aCover; Title Page; Copyright; Dedication; Preface; Contents; Chapter 1 Geometric Setting; 1.1 Vectors and Euclidean Point Space; 1.1.1 Vectors; 1.1.2 Euclidean Point Space; 1.1.3 Summary; 1.2 Tensors; 1.2.1 First-Order Tensors and Vectors; 1.2.2 Second-Order Tensors; 1.2.3 Cross Products, Triple Products, and Determinants; 1.2.4 Orthogonal Tensors; 1.2.5 Invariants of a Tensor; 1.2.6 Derivatives of Tensor-Valued Functions; 1.2.7 Summary; Chapter 2 Kinematics I: The Calculus of Motion; 2.1 Bodies, Motions, and Deformations; 2.1.1 Deformation; 2.1.2 Examples of Motions; 2.1.3 Summary 327 $a2.2 Derivatives of Motion 2.2.1 Time Derivatives; 2.2.2 Derivatives With Respect to Position; 2.2.3 The Deformation Gradient; 2.2.4 Summary; 2.3 Pathlines, Streamlines, and Streaklines; 2.3.1 Three Types of Arc; 2.3.2 An Example; 2.3.3 Summary; 2.4 Integrals Under Motion; 2.4.1 Arc, Surface, and Volume Integrals; 2.4.2 Reynolds Transport Theorem; 2.4.3 Summary; Chapter 3 Kinematics II: Strain and its Rates; 3.1 Strain; 3.1.1 Symmetric Tensors; 3.1.2 Polar Decomposition and the Deformation Gradient; 3.1.3 Examples; 3.1.4 Cauchy-Green and Strain Tensors; 3.1.5 Strain Invariants; 3.1.6 Summary 327 $a3.2 Infinitesimal Strain 3.2.1 The Infinitesimal Strain Tensor; 3.2.2 Summary; 3.3 Strain Rates; 3.3.1 Stretching and Spin Tensors; 3.3.2 Skew Tensors, Spin, and Vorticity; 3.3.3 Summary; 3.4 Vorticity and Circulation; 3.4.1 Circulation; 3.4.2 Summary; 3.5 Observer Transformations; 3.5.1 Changes in Frame of Reference; 3.5.2 Summary; Chapter 4 Balance Laws; 4.1 Mass Balance; 4.1.1 Local Forms of Mass Balance; 4.1.2 Summary; 4.2 Momentum Balance; 4.2.1 Analysis of Stress; 4.2.2 Inertial Frames of Reference; 4.2.3 Momentum Balance in Referential Coordinates; 4.2.4 Summary 327 $a4.3 Angular Momentum Balance 4.3.1 Symmetry of the Stress Tensor; 4.3.2 Summary; 4.4 Energy Balance; 4.4.1 Thermal Energy Balance; 4.4.2 Summary; 4.5 Entropy Inequality; 4.5.1 Motivation; 4.5.2 Clausius-Duhem Inequality; 4.5.3 Summary; 4.6 Jump Conditions; 4.6.1 Singular Surfaces; 4.6.2 Localization; 4.6.3 Summary; Chapter 5 Constitutive Relations: Examples of Mathematical Models; 5.1 Heat Transfer; 5.1.1 Properties of the Heat Equation; 5.1.2 Summary; 5.2 Potential Theory; 5.2.1 Motivation; 5.2.2 Boundary Conditions; 5.2.3 Uniqueness of Solutions to the Poisson Equation 327 $a5.2.4 Maximum Principle 5.2.5 Mean Value Property; 5.2.6 Summary; 5.3 Fluid Mechanics; 5.3.1 Ideal Fluids; 5.3.2 An Ideal Fluid in a Rotating Frame of Reference; 5.3.3 Acoustics; 5.3.4 Incompressible Newtonian Fluids; 5.3.5 Stokes Flow; 5.3.6 Summary; 5.4 Solid Mechanics; 5.4.1 Static Displacements; 5.4.2 Elastic Waves; 5.4.3 Summary; Chapter 6 Constitutive Theory; 6.1 Conceptual Setting; 6.1.1 The Need to Close the System; 6.1.2 Summary; 6.2 Determinism and Equipresence; 6.2.1 Determinism; 6.2.2 Equipresence; 6.2.3 Summary; 6.3 Objectivity; 6.3.1 Reducing Functional Dependencies 327 $a6.3.2 Summary 330 $aContinuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial 606 $aContinuum mechanics$vTextbooks 608 $aElectronic books. 615 0$aContinuum mechanics 676 $a531.076 700 $aAllen$b Myron B.$f1954-$054137 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910460992403321 996 $aContinuum mechanics$92152152 997 $aUNINA