LEADER 03437nam 2200673Ia 450 001 9910459336603321 005 20200520144314.0 010 $a1-282-71487-2 010 $a9786612714870 010 $a3-11-022020-2 024 7 $a10.1515/9783110220209 035 $a(CKB)2670000000017174 035 $a(EBL)511862 035 $a(OCoLC)644227926 035 $a(SSID)ssj0000421004 035 $a(PQKBManifestationID)11264879 035 $a(PQKBTitleCode)TC0000421004 035 $a(PQKBWorkID)10407509 035 $a(PQKB)11448157 035 $a(MiAaPQ)EBC511862 035 $a(DE-B1597)36952 035 $a(OCoLC)704822846 035 $a(DE-B1597)9783110220209 035 $a(PPN)175535981 035 $a(Au-PeEL)EBL511862 035 $a(CaPaEBR)ebr10373627 035 $a(CaONFJC)MIL271487 035 $a(EXLCZ)992670000000017174 100 $a20091012d2009 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to harmonic analysis and generalized Gelfand pairs$b[electronic resource] /$fGerrit van Dijik 210 $aBerlin ;$aNew York $cWalter De Gruyter$d2009 215 $a1 online resource (233 p.) 225 1 $aStudies in mathematics ;$v36 300 $aDescription based upon print version of record. 311 $a3-11-022019-9 320 $aIncludes bibliographical references (p. [217]-220) and index. 327 $t Frontmatter -- $tContents -- $t1 Fourier Series -- $t2 Fourier Integrals -- $t3 Locally Compact Groups -- $t4 Haar Measures -- $t5 Harmonic Analysis on Locally Compact Abelian Groups -- $t6 Classical Theory of Gelfand Pairs -- $t7 Examples of Gelfand Pairs -- $t8 Theory of Generalized Gelfand Pairs -- $t9 Examples of Generalized Gelfand Pairs -- $t Backmatter 330 $aThis book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs 410 0$aDe Gruyter studies in mathematics ;$v36. 606 $aHarmonic analysis 606 $aFourier analysis 608 $aElectronic books. 615 0$aHarmonic analysis. 615 0$aFourier analysis. 676 $a515.785 686 $aSK 450$2rvk 700 $aDijk$b Gerrit van$f1939-$01044290 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910459336603321 996 $aIntroduction to harmonic analysis and generalized Gelfand pairs$92473557 997 $aUNINA