LEADER 03481nam 2200733Ia 450 001 9910453878203321 005 20200520144314.0 010 $a0-19-280577-0 010 $a1-281-34654-3 010 $a0-19-151725-9 035 $a(CKB)1000000000722140 035 $a(EBL)422876 035 $a(OCoLC)476260169 035 $a(SSID)ssj0000184834 035 $a(PQKBManifestationID)11181951 035 $a(PQKBTitleCode)TC0000184834 035 $a(PQKBWorkID)10205463 035 $a(PQKB)11365523 035 $a(SSID)ssj0000438461 035 $a(PQKBManifestationID)12175276 035 $a(PQKBTitleCode)TC0000438461 035 $a(PQKBWorkID)10451743 035 $a(PQKB)11425462 035 $a(MiAaPQ)EBC422876 035 $a(Au-PeEL)EBL422876 035 $a(CaPaEBR)ebr10271585 035 $a(CaONFJC)MIL134654 035 $a(EXLCZ)991000000000722140 100 $a20080103e20072004 ub 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aJacquard's web$b[electronic resource] $ehow a hand-loom led to the birth of the information age /$fby James Essinger 210 $aOxford $cOxford University Press$d2007, c2004 215 $a1 online resource (315 p.) 300 $aFirst published: 2004. 311 $a9786611346546 311 $a0-19-280578-9 320 $aIncludes bibliographical references (p. 289-293) and index. 327 $aContents; List of illustrations; 1 The engraving that wasn't; 2 A better mousetrap; 3 The son of a master-weaver; 4 The Emperor's new clothes; 5 From weaving to computing; 6 The Difference Engine; 7 The Analytical Engine; 8 A question of faith and funding; 9 The lady who loved the Jacquard loom; 10 A crisis with the American Census; 11 The first Jacquard looms that wove information; 12 The birth of IBM; 13 The Thomas Watson phenomenon; 14 Howard Aiken dreams of a computer; 15 IBM and the Harvard Mark 1; 16 Weaving at the speed of light; 17 The future; Appendix 1: Charles Babbage's vindication 327 $aAppendix 2: Ada Lovelace's letter to Charles Babbage, 14 August 1843Appendix 3: How the Jacquard loom worked; Acknowledgements; Notes on sources; Bibliography; Index; 330 $aJacquard's Web tells one of the greatest untold stories of science: how a hand loom invented in Napoleonic France led to the birth of the modern computer age. James Essinger, a master storyteller, traces the 200-year evolution of Jacquard's idea from the studios of 18th century weavers, through the Industrial Revolution to the development of hi-tech computers and the information age today. - ;Jacquard's Web is the story of some of the most ingenious inventors the world has ever known, a fascinating account of how a hand-loom invented in Napoleonic France led to the development of the modern in 606 $aComputing$xHistory 606 $aCalculators 606 $aJacquard knitting machines 606 $aInformation technology$xHistory 608 $aElectronic books. 615 0$aComputing$xHistory. 615 0$aCalculators. 615 0$aJacquard knitting machines. 615 0$aInformation technology$xHistory. 676 $a004.09 676 $a004/.09 676 $a509 700 $aEssinger$b James$f1957-$0592976 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910453878203321 996 $aJacquard's web$92225684 997 $aUNINA LEADER 05420nam 2200661 a 450 001 9910459089203321 005 20200520144314.0 010 $a0-08-098226-3 035 $a(CKB)2660000000011325 035 $a(EBL)1192231 035 $a(SSID)ssj0000968753 035 $a(PQKBManifestationID)11508531 035 $a(PQKBTitleCode)TC0000968753 035 $a(PQKBWorkID)10985220 035 $a(PQKB)10619645 035 $a(MiAaPQ)EBC1192231 035 $a(PPN)176638954 035 $a(Au-PeEL)EBL1192231 035 $a(CaPaEBR)ebr10716843 035 $a(CaONFJC)MIL492960 035 $a(OCoLC)850162076 035 $a(EXLCZ)992660000000011325 100 $a20130614d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSulfuric acid manufacture$b[electronic resource]$eanalysis, control, and optimization /$fby Matthew J. King, William G. Davenport, Michael S. Moats 205 $a2nd ed. 210 $aSan Diego, Calif. $cElsevier$dc2013 215 $a1 online resource (464 p.) 300 $aDescription based upon print version of record. 311 $a0-08-098220-4 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Sulfuric Acid Manufacture: Analysis, Control, and Optimization; Copyright; Contents; Preface; Chapter 1: Overview; 1.1. Catalytic oxidation of SO2 to SO3; 1.1.1. Catalyst; 1.1.2. Feed gas drying; 1.2. H2SO4 production; 1.3. Industrial flowsheet; 1.4. Sulfur burning; 1.5. Metallurgical offgas; 1.6. Spent acid regeneration; 1.7. Sulfuric acid product; 1.8. Recent developments; 1.9. Alternative processes; 1.9.1. Wet gas sulfuric acid; 1.9.2. Sulfacid®; 1.10. Summary; References; Suggested reading; Chapter 2: Production and consumption; 2.1. Uses; 2.2. Acid plant locations 327 $a2.3. Price2.4. Summary; References; Suggested reading; Chapter 3: Sulfur burning; 3.1. Objectives; 3.2. Sulfur; 3.2.1. Viscosity; 3.3. Molten sulfur delivery; 3.3.1. Sulfur pumps and pipes; 3.4. Sulfur atomizers and sulfur burning furnaces; 3.4.1. Sulfur atomizers; 3.4.2. Dried air supply; 3.4.3. Main blower; 3.4.4. Furnace; 3.5. Product gas; 3.5.1. Gas destination; 3.5.2. Composition and temperature control; 3.5.3. Target gas composition; 3.5.4. Target gas temperature; 3.6. Heat recovery boiler; 3.7. Summary; References; Suggested reading; Chapter 4: Metallurgical offgas cooling and cleaning 327 $a4.1. Initial and final SO2 concentrations4.2. Initial and final dust concentrations; 4.3. Offgas cooling and heat recovery; 4.4. Electrostatic collection of dust; 4.5. Water scrubbing (Tables4.5 and 4.6); 4.5.1. Gas temperature after scrubbing; 4.5.2. Impure scrubbing liquid; 4.5.3. Mercury removal (Outotec, 2011; Schlesinger et al., 2011); 4.5.4. Fluorine removal; 4.6. H2O(g) removal from scrubber exit gas (Tables4.5 and 4.6); 4.7. Summary; References; Suggested reading; Chapter 5: Regeneration of spent sulfuric acid; 5.1. Spent acid compositions; 5.2. Spent acid handling 327 $a5.3. Decomposition5.3.1. Other reactions; 5.3.2. Spent acid spraying; 5.4. Decomposition furnace product; 5.5. Optimum decomposition furnace operating conditions; 5.5.1. Temperature effects; 5.5.2. O2 content effects; 5.6. Preparation of offgas for SO2 oxidation and H2SO4 making; 5.6.1. Gas composition; 5.7. Summary; References; Suggested Reading; Chapter 6: Dehydrating air and gases with strong sulfuric acid; 6.1. Chapter objectives; 6.1.1. H2O(g) before gas dehydration; 6.2. Dehydration with strong sulfuric acid; 6.2.1. H2O(g) concentration after gas dehydration 327 $a6.2.2. Choice of dehydration acid strength6.3. Dehydration reaction mechanism; 6.3.1. Maximizing dehydration rate; 6.4. Residence times; 6.5. Recent advances; 6.6. Summary; References; Chapter 7: Catalytic oxidation of SO2 to SO3*; 7.1. Objectives; 7.2. Industrial SO2 oxidation; 7.2.1. Source of O2; 7.3. Catalyst necessity; 7.3.1. Temperature effect; 7.4. SO2 oxidation ``heatup ? ? path (Chapter 11); 7.5. Industrial multicatalyst bed SO2 oxidation (Tables 7.2-7.7); 7.5.1. Overall multicatalyst bed results; 7.5.2. Double contact acidmaking; 7.6. Industrial operation (Table7.2); 7.6.1. Startup 327 $a7.6.2. Steady operation 330 $aBy some measure the most widely produced chemical in the world today, sulfuric acid has an extraordinary range of modern uses, including phosphate fertilizer production, explosives, glue, wood preservative and lead-acid batteries. An exceptionally corrosive and dangerous acid, production of sulfuric acid requires stringent adherence to environmental regulatory guidance within cost-efficient standards of production. This work provides an experience-based review of how sulfuric acid plants work, how they should be designed and how they should be operated for maximum sulfur capture and 606 $aSulfuric acid 606 $aSulfuric acid industry 608 $aElectronic books. 615 0$aSulfuric acid. 615 0$aSulfuric acid industry. 676 $a661/.22 700 $aKing$b Matthew J$0297418 701 $aDavenport$b William G$01040783 701 $aMoats$b Michael S$01040784 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910459089203321 996 $aSulfuric acid manufacture$92463928 997 $aUNINA