LEADER 02530nam 2200625Ia 450 001 9910458748303321 005 20200520144314.0 010 $a1-280-52771-4 010 $a9786610527717 010 $a0-19-535768-X 010 $a1-4294-0123-0 035 $a(CKB)1000000000402789 035 $a(EBL)270948 035 $a(OCoLC)560383147 035 $a(SSID)ssj0000101016 035 $a(PQKBManifestationID)11138377 035 $a(PQKBTitleCode)TC0000101016 035 $a(PQKBWorkID)10041881 035 $a(PQKB)10045008 035 $a(MiAaPQ)EBC270948 035 $a(Au-PeEL)EBL270948 035 $a(CaPaEBR)ebr10142321 035 $a(CaONFJC)MIL52771 035 $a(OCoLC)936848882 035 $a(EXLCZ)991000000000402789 100 $a19951102d1997 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic and differential topology of robust stability$b[electronic resource] /$fEdmond A. Jonckheere ; with 79 pictures, computer generated by Chih-Yung Cheng, Chung-Kuang Chu, and Murilo G. Coutinho 210 $aNew York $cOxford University Press$d1997 215 $a1 online resource (625 p.) 300 $aDescription based upon print version of record. 311 $a0-19-509301-1 320 $aIncludes bibliographical references and index. 327 $aContents; List of Figures; List of Symbols; 1 Prologue; I: SIMPLICIAL APPROXIMATION AND ALGORITHMS; II: HOMOLOGY OF ROBUST STABILITY; III: HOMOTOPY OF ROBUST STABILITY; IV: DIFFERENTIAL TOPOLOGY OF ROBUST STABILITY; V: ALGEBRAIC GEOMETRY OF CROSSOVER; VI: EPILOGUE; VII: APPENDICES; Bibliography; Index 330 $aThis book brings together the seemingly unrelated fields of algebraic topology and robust control. It develops algebraic/differential topology from an application-oriented point of view. It should be suitable for students in engineering and/or applied mathematics and academic researchers. 606 $aControl theory 606 $aAlgebraic topology 606 $aDifferential topology 608 $aElectronic books. 615 0$aControl theory. 615 0$aAlgebraic topology. 615 0$aDifferential topology. 676 $a629.8/312/015142 700 $aJonckheere$b Edmond A.$f1954-$0943108 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458748303321 996 $aAlgebraic and differential topology of robust stability$92128334 997 $aUNINA