LEADER 05612nam 22006974a 450 001 9910458683203321 005 20191030193358.0 010 $a1-281-03813-X 010 $a9786611038137 010 $a0-08-053312-4 035 $a(CKB)1000000000364635 035 $a(EBL)312727 035 $a(OCoLC)476100535 035 $a(SSID)ssj0000167893 035 $a(PQKBManifestationID)12036630 035 $a(PQKBTitleCode)TC0000167893 035 $a(PQKBWorkID)10177802 035 $a(PQKB)10941987 035 $a(MiAaPQ)EBC312727 035 $a(PPN)152909478 035 $a(Au-PeEL)EBL312727 035 $a(CaPaEBR)ebr10190310 035 $a(CaONFJC)MIL103813 035 $a(OCoLC)469633289 035 $a(EXLCZ)991000000000364635 100 $a20030806d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHandbook of MRI pulse sequences$b[electronic resource] /$fMatt A. Bernstein, Kevin F. King, Ziaohong Joe Zhou 210 $aAmsterdam ;$aBoston $cAcademic Press$dc2004 215 $a1 online resource (1041 p.) 300 $aDescription based upon print version of record. 311 $a0-12-800520-3 311 $a0-12-092861-2 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Handbook of MRI Pulse Sequences; Copyright Page; Contents; Forewords; Preface; PART I: Background; Introduction; Chapter 1. Tools; 1.1 Fourier Transforms; 1.2 Rotating Reference Frame; PART II: Radiofrequency Pulses; Introduction; Chapter 2. Radiofrequency Pulse Shapes; 2.1 Rectangular Pulses; 2.2 SINC Pulses; 2.3 SLR Pulses; 2.4 Variable-Rate Pulses; Chapter 3. Basic Radiofrequency Pulse Functions; 3.1 Excitation Pulses; 3.2 Inversion Pulses; 3.3 Refocusing Pulses; Chapter 4. Spectral Radiofrequency Pulses; 4.1 Composite Radiofrequency Pulses; 4.2 Magnetization Transfer Pulses 327 $a4.3 Spectrally Selective PulsesChapter 5. Spatical Radiofrequency Pulses; 5.1 Multidimensional Pulses; 5.2 Ramp (TONE) Pulses; 5.3 Spatial Saturation Pulses; 5.4 Spatial-Spectral Pulses; 5.5 Tagging Pulses; Chapter 6. Adiabatic Radiofrequency Pulses; 6.1 Adiabatic Excitation Pulses; 6.2 Adiabatic Inversion Pulses; 6.3 Adiabatic Refocusing Pulses; PART III: Gradients; Introduction; Chapter 7. Gradient Lobe Shapes; 7.1 Simple Gradient Lobes; 7.2 Bridged Gradient Lobes; 7.3 Gradients for Oblique Acquisitions; Chapter 8. Imaging Gradients; 8.1 Frequency-Encoding Gradients 327 $a8.2 Phase-Encoding Gradients8.3 Slice Selection Gradients; Chapter 9. Motion-Sensitizing Gradients; 9.1 Diffusion-Weighting Gradients; 9.2 Flow-Encoding Gradients; Chapter 10. Correction Gradients; 10.1 Concomitant-Field Correction Gradients; 10.2 Crusher Gradients; 10.3 Eddy-Current Compensation; 10.4 Gradient Moment Nulling; 10.5 Spoiler Gradients; 10.6 Twister (Projection Dephaser) Gradients; PART IV: Data Acquisition k-space Sampling,and Image Reconstruction; Introduction; Chapter ll. Signal Acquisition and k-Space Sampling; 11.1 Bandwidth and Sampling; 11.2 k-Space 327 $a11.3 Keyhole, BRISK, and TRICKS11.4 Real-Time Imaging; 11.5 Two-Dimensional Acquisition; 11.6 Three-Dimensional Acquisition; Chapter 12. Basic of Physiologic Gating Triggering,and Monitoring; 12.1 Cardiac Triggering; 12.2 Navigators; 12.3 Respiratory Gating and Compensation; Chapter 13. Common Image Reconstruction Techniques; 13.1 Fourier Reconstruction; 13.2 Gridding Reconstruction; 13.3 Parallel-Imaging Reconstruction; 13.4 Partial Fourier Reconstruction; 13.5 Phase Difference Reconstruction; 13.6 View Sharing; PART V: Pulse Sequences; Introduction; Chapter 14. Basic Pulse Sequences 327 $a14.1 Gradient Echo14.2 Inversion Recovery; 14.3 Radiofrequency Spin Echo; Chapter 15. Angiographic Pulse Sequences; 15.1 Black Blood Angiography; 15.2 Phase Contrast; 15.3 TOF and CEMRA; Chapter 16. Echo Train Pulse Sequences; 16.1 Echo Planar Imaging; 16.2 GRASE; 16.3 PRESTO; 16.4 RARE; Chapter 17. Advanced Pulse Sequence Techniques; 17.1 Arterial Spin Tagging; 17.2 Diffusion Imaging; 17.3 Dixon's Method; 17.4 Driven Equilibrium; 17.5 Projection Acquisition; 17.6 Spiral; Appendix I: Table of Symbols; Appendix II: Table of Constants and Conversion Factors; Appendix III: Common Abbreviations 327 $aIndex 330 $aMagnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different ""pulse sequences"", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. This book offers a complete guide that can help the scientists, engineers, clinicians, and technologis 606 $aMagnetic resonance imaging$vHandbooks, manuals, etc 606 $aMagnetic resonance imaging$xMathematical models$vHandbooks, manuals, etc 608 $aElectronic books. 615 0$aMagnetic resonance imaging 615 0$aMagnetic resonance imaging$xMathematical models 676 $a616.07/548 700 $aBernstein$b Matt A$0854343 701 $aKing$b Kevin Franklin$0971885 701 $aZhou$b Xiaohong Joe$0971886 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458683203321 996 $aHandbook of MRI pulse sequences$92209639 997 $aUNINA