LEADER 09396nam 2200697 450 001 9910458558803321 005 20200520144314.0 010 $a1-60650-437-1 024 7 $z10.5643/9781606504376 035 $a(CKB)2550000001333115 035 $a(SSID)ssj0001535681 035 $a(PQKBManifestationID)11819266 035 $a(PQKBTitleCode)TC0001535681 035 $a(PQKBWorkID)11502178 035 $a(PQKB)10702993 035 $a(OCoLC)892991224 035 $a(CaBNvSL)swl00404108 035 $a(MiAaPQ)EBC1747024 035 $a(Au-PeEL)EBL1747024 035 $a(CaPaEBR)ebr10951845 035 $a(CaONFJC)MIL629602 035 $a(OCoLC)884647645 035 $a(EXLCZ)992550000001333115 100 $a20190121d2014 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAtomic absorption spectrometry $ean introduction /$fAlfredo Sanz-Medel and Rosario Pereiro 205 $aSecond edition. 210 1$aNew York :$cMomentum Press, LLC,$d[2014] 210 4$dİ2014 215 $a1 online resource (xiii, 190 pages) $cillustrations 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-60650-435-5 311 $a1-306-98351-7 320 $aIncludes bibliographical references and index. 327 $a1. An introduction to analytical atomic spectrometry -- 1.1 Basic interactions of electromagnetic radiation with atoms for chemical analysis -- 1.2 Atomic line spectra and their origin -- 1.3 Atomic line characteristics -- 1.4 Atomic line spectral width -- 1.4.1 Natural broadening of lines -- 1.4.2 Doppler broadening -- 1.4.3 Lorentz broadening -- 1.4.4 Self-absorption effects -- 1.4.5 Other broadening processes -- 1.5 A comparative overview of analytical atomic spectrometric techniques -- 1.5.1 Dissolved sample analysis techniques -- 1.5.2 Direct solid analysis techniques -- 327 $a2. Theory and basic concepts in atomic absorption spectrometry -- 2.1 General introduction -- 2.2 The basic atomic absorption spectrometry experiment -- 2.3 The absorption coefficient concept -- 2.4 Quantitative analysis by atomic absorption spectrometry -- 2.5 Interferences in flame analytical atomic spectrometry techniques -- 2.5.1 Spectral interferences -- 2.5.2 Physical (transport) interferences -- 2.5.3 Chemical interferences -- 2.5.4 Ionization interferences -- 2.5.5 Temperature variations in the atomizer -- 2.5.6 Light scattering and unspecific absorptions -- 2.5.7 Quenching of the fluorescence -- 2.6 Analytical performance characteristics of AAS -- 2.6.1 Sensitivity and detection limits -- 2.6.2 Selectivity of the three flame-based techniques -- 2.6.3 Accuracy and precision -- 2.6.4 Analytical linear range -- 2.6.5 Versatility and sample throughput -- 2.6.7 Robustness and availability of well-proven methodologies -- 327 $a3. Basic components of atomic absorption spectrometric instruments -- 3.1 Introduction: single-beam and double-beam instruments -- 3.2 Primary radiation sources -- 3.2.1 Hollow cathode lamps -- 3.2.1.1 Details of the components of a HCL -- 3.2.1.2 HCL operation -- 3.2.1.3 Multi-element HCLs -- 3.2.2 Electrodeless discharge lamps -- 3.2.3 Boosted discharge lamps -- 3.2.4 Diode lasers -- 3.2.5 Continuous sources -- 3.3 Atomizers: a general view -- 3.4 Wavelength selectors -- 3.5 Detectors -- 3.6 Background correctors -- 3.6.1 Deuterium background corrector -- 3.6.2 Zeeman correction -- 3.6.3 Smith-Hieftje correction -- 327 $a4. Flame atomic absorption spectrometry -- 4.1 Introduction -- 4.2 The atomizer unit in flame atomic absorption spectrometry -- 4.2.1 Nebulizer, nebulization chamber, and burner -- 4.2.2 Flame -- 4.2.3 Special sampling techniques -- 4.3 Flame atomic absorption instrumentation -- 4.3.1 Flame atomic absorption spectrometers -- 4.3.2 Accessories -- 4.3.2.1 Autosamplers -- 4.3.2.2 Atom concentrator tube or slotted tube atom trap -- 4.3.2.3 High-solid analyzer -- 4.3.2.4 Flame microsampler -- 4.3.2.5 Automatic burner rotation -- 4.4 Analytical performance characteristics and interferences -- 4.4.1 Spectral interferences -- 4.4.2 Nonspectral interferences -- 4.4.3 Calibration in flame atomic absorption spectrometry -- 4.4.4 Analytical figures of merit -- 4.4.5 Use of organic solvents -- 4.5 Applications and example case studies -- 4.5.1 Determination of calcium in milk -- 4.5.2 Determination of molybdenum in fertilizers -- 4.5.3 Determination of lead in gasoline -- 4.5.4 Determination of boron, phosphorus, and sulfur by high-resolution continuum source FAAS for plant analysis -- 327 $a5. Electrothermal atomic absorption spectrometry -- 5.1 Introduction -- 5.2 The electrothermal atomizer -- 5.2.1 The atomization tube -- 5.2.2 Side-heated atomizers -- 5.3 Basic steps in analysis by electrothermal atomic absorption spectrometry: the temperature program -- 5.4 Instrumentation -- 5.4.1 Sample-introduction system -- 5.4.2 Instrumental background correction -- 5.4.3 Data acquisition and treatment -- 5.5 Interferences -- 5.5.1 Spectral interferences -- 5.5.2 Nonspectral interferences -- 5.6 Chemical modifiers -- 5.7 Atomization from solids and slurries -- 5.8 Analytical performance characteristics of electrothermal atomic absorption spectrometric methods -- 5.9 Applications and example case studies -- 5.9.1 Determination of lead in human urine and blood -- 5.9.2 Determination of selenium in human milk -- 5.9.3 Determination of sulfur in coal and ash slurry -- 327 $a6. Hydride generation and cold-vapor atomic absorption spectrometry -- 6.1 Introduction -- 6.2 Volatile hydride generation by tetrahydroborate (III) in aqueous media -- 6.2.1 Mechanisms of hydride formation -- 6.2.2 Basic instrumentation -- 6.2.3 Limits of detection -- 6.2.4 Selectivity: sources of interferences -- 6.3 Electrochemical generation of volatile hydrides -- 6.4 Cold-vapor generation -- 6.4.1 Mercury -- 6.4.2 Cadmium -- 6.5 Trapping/preconcentration of volatilized analytes -- 6.6 Applications and example case studies -- 6.6.1 Determination of arsenic in waters -- 6.6.2 Determination of mercury and methylmercury in hair -- 6.6.3 Determination of selenium in bean and soil samples using hydride generation, electrothermal atomic absorption spectrometry -- 327 $a7. Flow analysis and atomic absorption spectrometry -- 7.1 Introduction -- 7.2 Flow injection analysis and atomic absorption spectrometry -- 7.3 Basic instrument components: sample introduction unit, propulsion system, and connecting tubes -- 7.3.1 Sample introduction unit -- 7.3.2 Propulsion system -- 7.3.3 Connecting tubes -- 7.4 Simple common manifolds: dilution, reagent addition, and calibration -- 7.5 Solid-liquid separation and preconcentration -- 7.5.1 Sorption -- 7.5.2 Precipitation and coprecipitation -- 7.6 Gas-phase formation strategies -- 7.6.1 Flow systems for the formation of volatile derivatives of the analyte(s) -- 7.6.2 Approaches for preconcentration in the gas phase -- 7.7 Miniaturized preconcentration methods based on liquid-liquid extraction -- 7.8 Sample digestion -- 7.8.1 Online photo-oxidation flow systems -- 7.8.2 Online microwave-assisted digestion -- 7.9 Chromatographic separations coupled online to atomic absorption spectrometry -- 7.10 Applications and example case studies -- 7.10.1 Online aluminium preconcentration and its application to the determination of the metal in dialysis concentrates -- 7.10.2 Indirect atomic absorption spectrometric determination of iodine in milk products -- 7.10.3 High-performance liquid chromatography, microwave digestion, hydride generation, AAS for inorganic and organic arsenic speciation in fish tissue -- 327 $a8. Emerging fields of applications, chemometrics, quality-control and troubleshooting -- 8.1 Emerging fields of atomic absorption spectrometry applications -- 8.2 Basic chemometric techniques in AAS -- 8.3 Quality-control guidelines and troubleshooting -- 8.3.1 Flame AAS -- 8.3.1.1 Light system -- 8.3.1.2 Nebulizer and burner system -- 8.3.1.3 System cleanliness -- 8.3.2 Electrothermal AAS -- 8.3.2.1 Autosampler -- 8.3.2.2 Furnace workhead -- 8.3.2.3 Background correction -- 327 $aAppendix A. Buyer's guide -- Appendix B. Glossary of terms -- Appendix C. Standards -- References -- Index. 330 3 $aWe have restricted the scope of this tutorial book to the study of fundamentals and practical use of such popular and efficient atomic absorption techniques. An up-to-date account of AAS fundamentals, instrumentation, special techniques, and elemental analysis applications is provided here. To do so, the atomic absorption experiment and the photophysical law governing such photon absorption processes are revised first. Then, the main components or units, that, when adequately assembled, constitute an AAS instrument, are described in detail to set the foundations of modern spectrometers for AAS measurements. 606 $aAtomic absorption spectroscopy 608 $aElectronic books. 615 0$aAtomic absorption spectroscopy. 676 $a539.70287 700 $aSanz-Medel$b Alfredo$0875419 702 $aPereiro$b Rosario 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458558803321 996 $aAtomic absorption spectrometry$91954434 997 $aUNINA