LEADER 00971nam0 22002771i 450 001 990005566400403321 005 20201102115241.0 035 $a000556640 100 $a19990530g19711977km-y0itay50------ba 101 0 $aeng 105 $aa-------00--- 200 1 $aIsthmia$eexcavations by the University of Chicago under the auspices of the American School of Classical Studies at Athens 210 $aPrinceton (N.J.)$cAmerican School of Classical Studies at Athens$d1971-1977 215 $a3 v.$cill.$d31 cm 327 0 $a1.: Temple of Poseidon$a2.: Topography and architecture$a3.: Terracotta lamps 700 1$aBroneer,$bOscar$0207279 712 0 $aUniversity of Chicago 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005566400403321 952 $aARCH. G 76 2$bARCH. 17077$fFLFBC 952 $aARCH. G 76a 2$bARCH. 17077$fFLFBC 952 $aARCH. G 76b 2$bARCH. 19177$fFLFBC 959 $aFLFBC 996 $aIsthmia$946619 997 $aUNINA LEADER 04990nam 2200637 a 450 001 9910458462303321 005 20200520144314.0 010 $a1-281-92469-5 010 $a9786611924690 010 $a981-277-335-5 035 $a(CKB)1000000000402774 035 $a(EBL)1681239 035 $a(OCoLC)879025049 035 $a(SSID)ssj0000265242 035 $a(PQKBManifestationID)11218023 035 $a(PQKBTitleCode)TC0000265242 035 $a(PQKBWorkID)10294111 035 $a(PQKB)10999397 035 $a(MiAaPQ)EBC1681239 035 $a(WSP)00006136 035 $a(Au-PeEL)EBL1681239 035 $a(CaPaEBR)ebr10201465 035 $a(CaONFJC)MIL192469 035 $a(EXLCZ)991000000000402774 100 $a20060720d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe universal mandelbrot set$b[electronic resource] $ebeginning of the story /$fV. Dolotin, A. Morozov 210 $aHackensack, NJ $cWorld Scientiific Pub.$dc2006 215 $a1 online resource (176 p.) 300 $aDescription based upon print version of record. 311 $a981-256-837-9 320 $aIncludes bibliographical references (p. 161-162). 327 $aContents ; Preface ; 1. Introduction ; 2. Notions and notation ; 2.1 Objects associated with the space X ; 2.2 Objects associated with the space M ; 2.3 Combinatorial objects ; 2.4 Relations between the notions ; 3. Summary ; 3.1 Orbits and grand orbits ; 3.2 Mandelbrot sets 327 $a3.2.1 Forest structure 3.2.2 Relation to resultants and discriminants ; 3.2.3 Relation to stability domains ; 3.2.4 Critical points and locations of elementary domains ; 3.2.5 Perturbation theory and approximate self-similarity of Mandelbrot set ; 3.2.6 Trails in the forest 327 $a3.3 Sheaf of Julia sets over moduli space 4. Fragments of theory ; 4.1 Orbits and reduction theory of iterated maps ; 4.2 Bifurcations and discriminants: from real to complex ; 4.3 Discriminants and resultants for iterated maps ; 4.4 Period-doubling and beyond 327 $a4.5 Stability and Mandelbrot set 4.6 Towards the theory of Julia sets ; 4.6.1 Grand orbits and algebraic Julia sets ; 4.6.2 From algebraic to ordinary Julia set ; 4.6.3 Bifurcations of Julia set ; 4.7 On discriminant analysis for grand orbits 327 $a4.7.2 Irreducible constituents of discriminants and resultants 4.7.6 Summary ; 4.7.7 On interpretation of wntk ; 4.8 Combinatorics of discriminants and resultants ; 4.9 Shapes of Julia and Mandelbrot sets ; 4.9.1 Generalities 327 $a4.9.2 Exact statements about 1-parametric families of polynomials of power-d 330 $a This book is devoted to the structure of the Mandelbrot set - a remarkable and important feature of modern theoretical physics, related to chaos and fractals and simultaneously to analytical functions, Riemann surfaces, phase transitions and string theory. The Mandelbrot set is one of the bridges connecting the world of chaos and order. The authors restrict consideration to discrete dynamics of a single variable. This restriction preserves the most essential properties of the subject, but drastically simplifies computer simulations and the mathematical formalism. The coverage 606 $aMandelbrot sets 608 $aElectronic books. 615 0$aMandelbrot sets. 676 $a514/.742 700 $aDolotin$b V$g(Valerii? Valer?evich)$0934539 701 $aMorozov$b A. D$g(Al?bert Dmitrievich),$f1944-$028597 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458462303321 996 $aThe universal mandelbrot set$92104442 997 $aUNINA