LEADER 05211nam 2200577 450 001 9910458332003321 005 20200520144314.0 010 $a1-118-63446-2 035 $a(CKB)2550000001298079 035 $a(EBL)1687058 035 $a(MiAaPQ)EBC1687058 035 $a(Au-PeEL)EBL1687058 035 $a(CaPaEBR)ebr10870841 035 $a(CaONFJC)MIL608497 035 $a(OCoLC)880058470 035 $a(EXLCZ)992550000001298079 100 $a20140522h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aStatistical applications for environmental analysis and risk assessment /$fJoseph Ofungwu 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons,$d2014. 210 4$d©2014 215 $a1 online resource (648 p.) 225 1 $aWiley Series in Statistics in Practice 300 $aDescription based upon print version of record. 311 $a1-118-63453-5 311 $a1-306-77246-X 320 $aIncludes bibliographical references and index. 327 $aStatistical Applications for Environmental Analysis and Risk Assessment; Contents; Preface; Acknowledgements; 1. Introduction; 1.1 Introduction and Overview; 1.2 The Aim of the Book: Get Involved!; 1.3 The Approach and Style: Clarity, Clarity, Clarity; Part I: Basic Statistical Measures and Concepts; 2. Introduction to Software Packages used in this Book; 2.1 R; 2.1.1 Helpful R Tips; 2.1.2 Disadvantages of R; 2.2 ProUCL; 2.2.1 Helpful ProUCL Tips; 2.2.2 Potential Deficiencies of ProUCL; 2.3 Visual Sample Plan; 2.4 DATAPLOT; 2.4.1 Helpful Tips for Running DATAPLOT in Batch Mode 327 $a2.5 Kendall-Thiel Robust Line2.6 Minitab®; 2.7 Microsoft Excel; 3. Laboratory Detection Limits, Non-Detects and Data Analysis; 3.1 Introduction and Overview; 3.2 Types of Laboratory Data Detection Limits; 3.3 Problems with Nondetects in Statistical Data Samples; 3.4 Options for Addressing Nondetects in Data Analysis; 3.4.1 Kaplan-Meier Estimation; 3.4.2 Robust Regression on Order Statistics; 3.4.3 Maximum Likelihood Estimation; 4. Data Sample, Data Population and Data Distribution; 4.1 Introduction and Overview; 4.2 Data Sample Versus Data Population or Universe 327 $a4.3 The Concept of a Distribution4.3.1 The Concept of a Probability Distribution Function; 4.3.2 Cumulative Probability Distribution and Empirical Cumulative Distribution Functions; 4.4 Types of Distributions; 4.4.1 Normal Distribution; 4.4.1.1 Goodness-of-Fit (GOF) Tests for the Normal Distribution; 4.4.1.2 Central Limit Theorem; 4.4.2 Lognormal, Gamma, and Other Continuous Distributions; 4.4.2.1 Gamma Distribution; 4.4.2.2 Logistic Distribution; 4.4.2.3 Other Continuous Distributions; 4.4.3 Distributions Used in Inferential Statistics (Student's t, Chi-Square, F) 327 $a4.4.3.1 Student's t Distribution4.4.3.2 Chi-Square Distribution; 4.4.3.3 F Distribution; 4.4.4 Discrete Distributions; 4.4.4.1 Binomial Distribution; 4.4.4.2 Poisson Distribution; Exercises; 5. Graphics for Data Analysis and Presentation; 5.1 Introduction and Overview; 5.2 Graphics for Single Univariate Data Samples; 5.2.1 Box and Whiskers Plot; 5.2.2 Probability Plots (i.e., Quantile-Quantile Plots for Comparing a Data Sample to a Theoretical Distribution); 5.2.3 Quantile Plots; 5.2.4 Histograms and Kernel Density Plots; 5.3 Graphics for Two or More Univariate Data Samples 327 $a5.3.1 Quantile-Quantile Plots for Comparing Two Univariate Data Samples5.3.2 Side-by-Side Box Plots; 5.4 Graphics for Bivariate and Multivariate Data Samples; 5.4.1 Graphical Data Analysis for Bivariate Data Samples; 5.4.2 Graphical Data Analysis for Multivariate Data Samples; 5.5 Graphics for Data Presentation; 5.6 Data Smoothing; 5.6.1 Moving Average and Moving Median Smoothing; 5.6.2 Locally Weighted Scatterplot Smoothing (LOWESS or LOESS); 5.6.2.1 Smoothness Factor and the Degree of the Local Regression; 5.6.2.2 Basic and Robust LOWESS Weighting Functions 327 $a5.6.2.3 LOESS Scatterplot Smoothing for Data with Multiple Variables 330 $a Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and "ready-made" software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: Descriptions of basic statistical concepts and principles in an informal style t 410 0$aStatistics in practice. 606 $aEnvironmental risk assessment$xStatistical methods 608 $aElectronic books. 615 0$aEnvironmental risk assessment$xStatistical methods. 676 $a363.7/02 700 $aOfungwu$b Joseph$0922493 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458332003321 996 $aStatistical applications for environmental analysis and risk assessment$92070074 997 $aUNINA