LEADER 04518nam 22006494a 450 001 9910458061703321 005 20200520144314.0 010 $a981-277-829-2 035 $a(CKB)1000000000400328 035 $a(EBL)1679462 035 $a(OCoLC)879023570 035 $a(SSID)ssj0000165950 035 $a(PQKBManifestationID)11161917 035 $a(PQKBTitleCode)TC0000165950 035 $a(PQKBWorkID)10145828 035 $a(PQKB)10607903 035 $a(MiAaPQ)EBC1679462 035 $a(WSP)00004839 035 $a(Au-PeEL)EBL1679462 035 $a(CaPaEBR)ebr10201276 035 $a(CaONFJC)MIL505458 035 $a(EXLCZ)991000000000400328 100 $a20020514d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGroups with prescribed quotient groups and associated module theory$b[electronic resource] /$fL. Kurdachenko, J. Otal, I. Subbotin 210 $aRiver Edge, NJ $cWorld Scientific$dc2002 215 $a1 online resource (244 p.) 225 1 $aSeries in algebra ;$vv. 8 300 $aDescription based upon print version of record. 311 $a981-02-4783-4 320 $aIncludes bibliographical references (p. 203-219) and index. 327 $aContents ; Preface ; Notation ; I Simple Modules ; 1. On Annihilators of Modules ; 2. The Structure of Simple Modules over Abelian Groups ; 3. The Structure of Simple Modules over Some Generalizations of Abelian Groups ; 4. Complements of Simple Submodules ; II Just Infinite Modules 327 $a5. Some Results on Modules over Dedekind Domains 6. Just Infinite Modules over FC-Hypercentral Groups ; 7. Just Infinite Modules over Groups of Finite 0-Rank ; 8. Just Infinite Modules over Polycyclic-by-Finite Groups ; 9. Co-Layer-Finite Modules over Dedekind Domains 327 $aIII Just Non-X-Groups 10. The Fitting Subgroup of Some Just Non-X-Groups ; 11. Just Non-Abelain Groups ; 12. Just Non-Hypercentral Groups and Just Non-Hypercentral Modules ; 13. Groups with Many Nilpotent Factor-Groups ; 14. Groups with Proper Periodic Factor-Groups 327 $a15. Just Non-(Polycyclic-by-Finite) Groups 16. Just Non-CC-Groups and Related Classes ; 17. Groups Whose Proper Factor-Groups Have a Transitive Normality Relation ; Bibliography ; Author Index ; Subject Index 330 $a The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural and promising. This theme has a history that is almost a half-century long. The authors of this book present well-established results as well as newer, contemporary achievements in this area from the common integral point of view. This view is based on the implementation of module theory for solving 410 0$aSeries in algebra ;$vv. 8. 606 $aGroup theory 606 $aModules (Algebra) 608 $aElectronic books. 615 0$aGroup theory. 615 0$aModules (Algebra) 676 $a512/.2 700 $aKurdachenko$b L$0522034 701 $aOtal$b Jean-Pierre$0954458 701 $aSubbotin$b Igor Ya.$f1950-$0522035 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458061703321 996 $aGroups with prescribed quotient groups and associated module theory$92158745 997 $aUNINA