LEADER 03033nam 22006372 450 001 9910458045603321 005 20151005020624.0 010 $a1-107-22867-0 010 $a1-139-23509-5 010 $a1-283-38259-8 010 $a9786613382597 010 $a1-139-18968-9 010 $a0-511-86322-5 010 $a1-139-19097-0 010 $a1-139-18837-2 010 $a1-139-18375-3 010 $a1-139-18607-8 035 $a(CKB)2550000000075763 035 $a(EBL)807343 035 $a(OCoLC)782877087 035 $a(SSID)ssj0000570853 035 $a(PQKBManifestationID)11334580 035 $a(PQKBTitleCode)TC0000570853 035 $a(PQKBWorkID)10610982 035 $a(PQKB)10486241 035 $a(UkCbUP)CR9780511863226 035 $a(MiAaPQ)EBC807343 035 $a(Au-PeEL)EBL807343 035 $a(CaPaEBR)ebr10521006 035 $a(CaONFJC)MIL338259 035 $a(EXLCZ)992550000000075763 100 $a20101111d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn introduction to category theory /$fHarold Simmons$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (ix, 226 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-28304-3 311 $a1-107-01087-X 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Preface; 1. Categories; 2. Basic gadgetry; 3. Functors and natural transformations; 4. Limits and colimits in general; 5. Adjunctions; 6. Posets and monoid sets; Bibliography; Index. 330 $aCategory theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course. 606 $aCategories (Mathematics) 615 0$aCategories (Mathematics) 676 $a512/.62 700 $aSimmons$b Harold$01033565 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910458045603321 996 $aAn introduction to category theory$92452177 997 $aUNINA