LEADER 00938cam0 2200277 450 001 E600200012812 005 20201116114805.0 100 $a20050930d1989 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $a<>sette colori$fRobert Brasillach$gintrod. di Fausta Garavini 210 $aNapoli$cGuida$d1989 215 $a258 p.$d21 cm 225 2 $aArchivio del Romanzo$v31 410 1$1001LAEC00019338$12001 $a*Archivio del Romanzo$v31 700 1$aBrasillach$b, Robert$3A600200032573$4070$0190543 702 1$aGaravini, Fausta$3A600200027907$4070 801 0$aIT$bUNISOB$c20201116$gRICA 850 $aUNISOB 852 $aUNISOB$j000|Coll|24|K$m61792 912 $aE600200012812 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a000|Coll|24|K$b000037$gSi$d61792$rDono$1pregresso2$2UNISOB$3UNISOB$420050930060359.0$520201116114756.0$6Spinosa 996 $aSette colori$9137425 997 $aUNISOB LEADER 03402nam 22006732 450 001 9910457742903321 005 20151005020621.0 010 $a1-107-15482-0 010 $a1-280-51593-7 010 $a9786610515936 010 $a0-511-22032-4 010 $a0-511-22120-7 010 $a0-511-21923-7 010 $a0-511-31459-0 010 $a0-511-61682-1 010 $a0-511-21991-1 035 $a(CKB)1000000000352418 035 $a(EBL)261126 035 $a(OCoLC)228144788 035 $a(SSID)ssj0000238238 035 $a(PQKBManifestationID)11176434 035 $a(PQKBTitleCode)TC0000238238 035 $a(PQKBWorkID)10222283 035 $a(PQKB)11374013 035 $a(UkCbUP)CR9780511616822 035 $a(MiAaPQ)EBC261126 035 $a(PPN)137615175 035 $a(Au-PeEL)EBL261126 035 $a(CaPaEBR)ebr10130351 035 $a(CaONFJC)MIL51593 035 $a(EXLCZ)991000000000352418 100 $a20090915d2006|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRiemannian geometry $ea modern introduction /$fIsaac Chavel$b[electronic resource] 205 $aSecond edition. 210 1$aCambridge :$cCambridge University Press,$d2006. 215 $a1 online resource (xvi, 471 pages) $cdigital, PDF file(s) 225 1 $aCambridge studies in advanced mathematics ;$v98 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-61954-8 311 $a0-521-85368-0 320 $aIncludes bibliographical references (p. 449-464) and indexes. 327 $gI.$tRiemannian manifolds --$gII.$tRiemannian curvature --$gIII.$tRiemannian volume --$gIV.$tRiemannian coverings --$gV.$tSurfaces --$gVI.$tIsoperimetric inequalities (constant curvature) --$gVII.$tThe kinematic density --$gVIII.$tIsoperimetric inequalities (variable curvature) --$gIX.$tComparison and finiteness theorems. 330 $aThis book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. 410 0$aCambridge studies in advanced mathematics ;$v98. 606 $aGeometry, Riemannian 615 0$aGeometry, Riemannian. 676 $a516.3/73 700 $aChavel$b Isaac$053814 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910457742903321 996 $aRiemannian geometry$9336905 997 $aUNINA