LEADER 06204nam 22007572 450 001 9910457508703321 005 20151005020621.0 010 $a1-107-22467-5 010 $a1-283-34235-9 010 $a1-139-16026-5 010 $a9786613342355 010 $a1-139-15465-6 010 $a1-139-16126-1 010 $a1-139-15569-5 010 $a1-139-15744-2 010 $a1-139-15921-6 010 $a1-139-01496-X 035 $a(CKB)2550000000061330 035 $a(EBL)807153 035 $a(SSID)ssj0000555225 035 $a(PQKBManifestationID)11336297 035 $a(PQKBTitleCode)TC0000555225 035 $a(PQKBWorkID)10533522 035 $a(PQKB)11028649 035 $a(UkCbUP)CR9781139014960 035 $a(MiAaPQ)EBC807153 035 $a(Au-PeEL)EBL807153 035 $a(CaPaEBR)ebr10514175 035 $a(CaONFJC)MIL334235 035 $a(OCoLC)773039086 035 $a(EXLCZ)992550000000061330 100 $a20110214d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNonlinear transistor model parameter extraction techniques /$fedited by Matthias Rudolph, Christian Fager, David E. Root$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xiv, 352 pages) $cdigital, PDF file(s) 225 1 $aThe Cambridge RF and microwave engineering series 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-76210-3 320 $aIncludes bibliographical references and index. 327 $aCover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics 327 $a2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology 327 $a3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements 327 $a4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction 327 $a4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References 327 $a5 The large-signal model: theoretical foundations, practical considerations, and recent trends 330 $aAchieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and academia provides you with insights into a range of key topics, including parasitics, intrinsic extraction, statistics, extraction uncertainty, nonlinear and DC parameters, self-heating and traps, noise, and package effects. Learn how similar approaches to parameter extraction can be applied to different technologies. A variety of real-world industrial examples and measurement results show you how the theories and methods presented can be used in practice. Whether you use transistor models for evaluation of device processing and you need to understand the methods behind the models you use, or you want to develop models for existing and new device types, this is your complete guide to parameter extraction. 410 0$aCambridge RF and microwave engineering series. 606 $aTransistors$xMathematical models 606 $aElectronic circuit design 615 0$aTransistors$xMathematical models. 615 0$aElectronic circuit design. 676 $a621.3815/28 702 $aRudolph$b Matthias$f1969- 702 $aFager$b Christian 702 $aRoot$b David E. 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910457508703321 996 $aNonlinear transistor model parameter extraction techniques$92475146 997 $aUNINA