LEADER 00947cam0-2200325---450- 001 990004357140403321 005 20140714120615.0 010 $a84-660-0071-2 035 $a000435714 035 $aFED01000435714 035 $a(Aleph)000435714FED01 035 $a000435714 100 $a19990604d1981----km-y0itay50------ba 101 0 $aspa 102 $aVE 105 $a--------001cy 200 1 $a<>reino de la imagen$fJosé Lezama Lima$gselección, prólogo y cronologia Julio Ortega 210 $aCaracas$cBiblioteca Ayacucho$d1981 215 $aXXIX, 609 p.$d24 cm 225 1 $aBiblioteca Ayacucho$v83 676 $a868.64 700 1$aLezama Lima,$bJosé$f<1910-1976>$0385153 702 1$aOrtega,$bJulio$f<1942- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004357140403321 952 $a868.64 LEZA 1$bBibl.16085$fFLFBC 959 $aFLFBC 996 $aReino de la imagen$9540381 997 $aUNINA LEADER 05659nam 2200709 a 450 001 9910457497603321 005 20200520144314.0 010 $a981-4366-89-7 035 $a(CKB)2550000000087658 035 $a(EBL)846124 035 $a(SSID)ssj0000735352 035 $a(PQKBManifestationID)11378060 035 $a(PQKBTitleCode)TC0000735352 035 $a(PQKBWorkID)10749952 035 $a(PQKB)10344415 035 $a(MiAaPQ)EBC846124 035 $a(WSP)00008267 035 $a(Au-PeEL)EBL846124 035 $a(CaPaEBR)ebr10529361 035 $a(CaONFJC)MIL498439 035 $a(OCoLC)785777960 035 $a(EXLCZ)992550000000087658 100 $a20120227d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMultiscale problems$b[electronic resource] $etheory, numerical approximation and applications /$feditors, Alain Damlamian, Bernadette Miara, Tatsien Li 210 $aBeijing, China $cHigher Education Press$d2011 215 $a1 online resource (314 p.) 225 1 $aSeries in contemporary applied mathematics ;$v16 300 $aDescription based upon print version of record. 311 $a981-4366-88-9 320 $aIncludes bibliographical references. 327 $aPreface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U 327 $a2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References 327 $aGabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 327 $a4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 327 $a7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ?e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 327 $a4.2 Elementary displacements and decompositions 330 $aThe focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier-Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) 410 0$aSeries in contemporary applied mathematics ;$v16. 606 $aHomogenization (Differential equations)$vCongresses 606 $aDifferential equations, Nonlinear$vCongresses 606 $aMathematical analysis$vCongresses 608 $aElectronic books. 615 0$aHomogenization (Differential equations) 615 0$aDifferential equations, Nonlinear 615 0$aMathematical analysis 676 $a515.353 676 $a518.5 701 $aDamlamian$b Alain$0768005 701 $aMiara$b Bernadette$0891159 701 $aLi$b Daqian$0755910 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457497603321 996 $aMultiscale problems$92444243 997 $aUNINA LEADER 01786nam 2200349 n 450 001 996391000303316 005 20221108091959.0 035 $a(CKB)1000000000667039 035 $a(EEBO)2240880501 035 $a(UnM)99837736 035 $a(EXLCZ)991000000000667039 100 $a19901016d1592 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 00$aCertain godly and learned treatises written by that worthie minister of Christe, M. Dudley Fenner; for the behoofe and edification of al those, that desire to grovv and increase in true godlines. The titles whereof, are set downe in the page following$b[electronic resource] 210 $aEdinburgh $cPrinted by Robert Waldegraue, printer to the Kings Maiestie$d1592 215 $a[8], 192 p 300 $aReprints part 2 of "The artes of logike and rethorike" ("The order of housholde"), "A briefe treatise upon the first table of the lawe", "The whole doctrine of the sacramentes", and "A short and profitable treatise, of lawfull and unlawfull recreations". 300 $aAt foot of title: Cum priuilegio regali. 300 $aReproduction of the original in the Henry E. Huntington Library and Art Gallery. 330 $aeebo-0113 606 $aTheology, Doctrinal$vEarly works to 1800 615 0$aTheology, Doctrinal 700 $aFenner$b Dudley$f1558?-1587.$01001675 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996391000303316 996 $aCertain godly and learned treatises written by that worthie minister of Christe, M. Dudley Fenner; for the behoofe and edification of al those, that desire to grovv and increase in true godlines. The titles whereof, are set downe in the page following$92335378 997 $aUNISA