LEADER 03911nam 2200625 a 450 001 9910457453003321 005 20200520144314.0 010 $a0-674-06274-4 024 7 $a10.4159/harvard.9780674062740 035 $a(CKB)2550000000057302 035 $a(OCoLC)758390009 035 $a(CaPaEBR)ebrary10504834 035 $a(SSID)ssj0000565772 035 $a(PQKBManifestationID)11319167 035 $a(PQKBTitleCode)TC0000565772 035 $a(PQKBWorkID)10533666 035 $a(PQKB)10831058 035 $a(MiAaPQ)EBC3300986 035 $a(DE-B1597)178310 035 $a(OCoLC)840440242 035 $a(DE-B1597)9780674062740 035 $a(Au-PeEL)EBL3300986 035 $a(CaPaEBR)ebr10504834 035 $a(OCoLC)923117581 035 $a(EXLCZ)992550000000057302 100 $a20110222d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA short history of physics in the American century$b[electronic resource] /$fDavid C. Cassidy 210 $aCambridge, Mass. $cHarvard University Press$d2011 215 $a1 online resource (220 p.) 225 1 $aNew histories of science, technology, and medicine 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-674-04936-5 320 $aIncludes bibliographical references and index. 327 $aEntering the new century -- American physics comes of age -- Surviving the depression -- The physicists war -- Taming the endless frontier -- The new physics -- Sputnik : action and reaction -- Revising the partnership. 330 $aAs the twentieth century drew to a close, computers, the Internet, and nanotechnology were central to modern American life. Yet the advances in physics underlying these applications are poorly understood and widely underappreciated by U.S. citizens today. In this concise overview, David C. Cassidy sharpens our perspective on modern physics by viewing this foundational science through the lens of America's engagement with the political events of a tumultuous century. American physics first stirred in the 1890's-around the time x-rays and radioactivity were discovered in Germany-with the founding of graduate schools on the German model. Yet American research lagged behind the great European laboratories until highly effective domestic policies, together with the exodus of physicists from fascist countries, brought the nation into the first ranks of world research in the 1930's. The creation of the atomic bomb and radar during World War II ensured lavish government support for particle physics, along with computation, solid-state physics, and military communication. These advances facilitated space exploration and led to the global expansion of the Internet. Well into the 1960's, physicists bolstered the United States' international status, and the nation repaid the favor through massive outlays of federal, military, and philanthropic funding. But gradually America relinquished its postwar commitment to scientific leadership, and the nation found itself struggling to maintain a competitive edge in science education and research. Today, American physicists, relying primarily on industrial funding, must compete with smaller, scrappier nations intent on writing their own brief history of physics in the twenty-first century. 410 0$aNew histories of science, technology, and medicine. 606 $aPhysics$zUnited States$xHistory 606 $aPhysicists$zUnited States 608 $aElectronic books. 615 0$aPhysics$xHistory. 615 0$aPhysicists 676 $a530.0973/0904 700 $aCassidy$b David C.$f1945-$0539360 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457453003321 996 $aA short history of physics in the American century$92457246 997 $aUNINA LEADER 05611nam 2200793Ia 450 001 9910818938103321 005 20230725045411.0 010 $a9783527636419 010 $a3527636412 010 $a9781283869775 010 $a1283869772 010 $a9783527636426 010 $a3527636420 010 $a9783527636402 010 $a3527636404 035 $a(CKB)3280000000000281 035 $a(EBL)822720 035 $a(OCoLC)797919284 035 $a(SSID)ssj0000627834 035 $a(PQKBManifestationID)11368949 035 $a(PQKBTitleCode)TC0000627834 035 $a(PQKBWorkID)10701461 035 $a(PQKB)11481573 035 $a(OCoLC)773106765 035 $a(MiAaPQ)EBC822720 035 $a(Au-PeEL)EBL822720 035 $a(CaPaEBR)ebr10631303 035 $a(CaONFJC)MIL418227 035 $a(Perlego)1014258 035 $a(EXLCZ)993280000000000281 100 $a20111003d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aModeling of molecular properties /$fedited by Peter Comba 205 $a2nd ed. 210 $aWeinheim $cWiley-VCH$dc2011 215 $a1 online resource (513 p.) 300 $aDescription based upon print version of record. 311 08$a9783527330218 311 08$a3527330216 320 $aIncludes bibliographical references and index. 327 $aModeling of Molecular Properties; Contents; Preface; List of Contributors; Part One: Theory and Concepts; 1 Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications; 1.1 Introduction; 1.2 Theoretical Background; 1.2.1 Double-Hybrid Density Functionals; 1.2.2 London-Dispersion-Corrected DFT; 1.3 Examples; 1.3.1 GMTKN30; 1.3.2 A Mechanistic Study with B2PLYP-D; 1.3.3 Double-Hybrids for Excited States; 1.4 Summary and Conclusions; References; 2 Free-Energy Surfaces and Chemical Reaction Mechanisms and Kinetics; 2.1 Introduction; 2.2 Elementary Reactions 327 $a2.3 Two Consecutive Steps2.4 Multiple Consecutive Steps; 2.5 Competing Reactions; 2.6 Catalysis; 2.7 Conclusions; References; 3 The Art of Choosing the Right Quantum Chemical Excited-State Method for Large Molecular Systems; 3.1 Introduction; 3.2 Existing Excited-State Methods for Medium-Sized and Large Molecules; 3.2.1 Wavefunction-Based ab initio Methods; 3.2.2 Density-Based Methods; 3.3 Analysis of Electronic Transitions; 3.4 Calculation of Static Absorption and Fluorescence Spectra; 3.5 Dark States; 3.5.1 Excited Electronic States with Large Double Excitation Character 327 $a3.5.2 Charge-Transfer Excited States3.6 Summary and Conclusions; References; 4 Assigning and Understanding NMR Shifts of Paramagnetic Metal Complexes; 4.1 The Aim and Scope of the Chapter; 4.2 Basic Theory of Paramagnetic NMR; 4.2.1 The Origin of the Hyper.ne Shift; 4.2.1.1 The Contact Shift; 4.2.1.2 The Pseudocontact Shift; 4.2.2 Relaxation and Line Widths; 4.2.2.1 Electronic Relaxation; 4.2.2.2 Dipolar Relaxation; 4.2.2.3 Contact Relaxation; 4.2.2.4 Curie Relaxation; 4.2.3 Advice for Recording Paramagnetic NMR Spectra; 4.3 Signal Assignments; 4.3.1 Comparison of Similar Compounds 327 $a4.3.2 Separation of Contact and Pseudocontact Shift4.3.3 Estimating the Dipolar Contributions; 4.3.4 DFT-Calculation of Spin-Densities; 4.4 Case Studies; 4.4.1 Organochromium Complexes; 4.4.2 Nickel Complexes; References; 5 Tracing Ultrafast Electron Dynamics by Modern Propagator Approaches; 5.1 Charge Migration Processes; 5.1.1 Theoretical Considerations of Charge Migration; 5.2 Interatomic Coulombic Decay in Noble Gas Clusters; 5.2.1 Theoretical Considerations of ICD; References; 6 Natural Bond Orbitals and Lewis-Like Structures of Copper Blue Proteins 327 $a6.1 Introduction: Localized Bonding Concepts in Copper Chemistry6.2 Localized Bonds and Molecular Geometries in Polyatomic Cu Complexes; 6.3 Copper Blue Proteins and Localized Bonds; 6.4 Summary; References; 7 Predictive Modeling of Molecular Properties: Can We Go Beyond Interpretation?; 7.1 Introduction; 7.2 Models and Modeling; 7.3 Parameterized Classical and Quantum Mechanical Theories; 7.4 Predictive Energies and Structures; 7.5 Other Gas-Phase Properties; 7.6 Solvent Effects: The Major Problem; 7.7 Reaction Selectivity; 7.8 Biological and Pharmaceutical Modeling; 7.8.1 SAR Modeling 327 $a7.8.2 Force Fields, Docking, and Scoring 330 $aMolecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 606 $aBiochemistry 606 $aChemistry, Inorganic 606 $aChemistry, Organic 606 $aMolecules$xModels 615 0$aBiochemistry. 615 0$aChemistry, Inorganic. 615 0$aChemistry, Organic. 615 0$aMolecules$xModels. 676 $a541.220113 676 $a620.11299 701 $aComba$b Peter$0621773 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818938103321 996 $aModeling of molecular properties$93984295 997 $aUNINA