LEADER 05279nam 2200673Ia 450 001 9910457297603321 005 20200520144314.0 010 $a1-280-62176-1 010 $a9786610621767 010 $a0-08-045525-5 035 $a(CKB)1000000000358038 035 $a(EBL)269555 035 $a(OCoLC)475997853 035 $a(SSID)ssj0000182672 035 $a(PQKBManifestationID)11169846 035 $a(PQKBTitleCode)TC0000182672 035 $a(PQKBWorkID)10172839 035 $a(PQKB)10834456 035 $a(MiAaPQ)EBC269555 035 $a(PPN)140793887 035 $a(Au-PeEL)EBL269555 035 $a(CaPaEBR)ebr10138052 035 $a(CaONFJC)MIL62176 035 $a(OCoLC)162129987 035 $a(EXLCZ)991000000000358038 100 $a20050426d2005 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to laser spectroscopy$b[electronic resource] /$fHalina Abramczyk 205 $a1st ed. 210 $aAmsterdam ;$aBoston $cElsevier$d2005 215 $a1 online resource (331 p.) 300 $aDescription based upon print version of record. 311 $a0-444-51662-X 320 $aIncludes bibliographical references and index. 327 $acopyright; front matter; Acknowledgements; Preface; table of contents; body; 1. Basic Physics of Lasers; 1.1. SPONTANEOUS AND STIMULATED TRANSITIONS. EINSTEIN COEFFICIENTS. PROPERTIES OF STIMULATED RADIATION; 1.2. LASER OPERATION BASICS; 1.3. POPULATION INVERSION; 1.4. AMPLIFICATION AND SATURATION; REFERENCES 1; 2. Distribution of the Electromagnetic Field in the Optical Resonator; 2.1. LONGITUDINAL MODES; 2.2. QUALITY FACTOR OF RESONATOR RELATIONSHIP BETWEEN LINEWIDTH OF STIMULATED EMISSION AND RESONATOR QUALITY FACTOR; 2.3. TRANSVERSE MODES; REFERENCES 2 327 $a3. Generation of Ultrashort Laser Pulses 3.1. MODELOCKING. RELATIONSHIP BETWEEN LINE WIDTH OF STIMULATED EMISSION AND PULSE DURATION; 3.2. METHODS OF MODELOCKING. ACTIVE AND PASSIVE MODELOCKING; 3.3. Q-SWITCHING; 3.4. CAVITY DUMPING; REFERENCES 3; 4. Lasers; 4.1. RUBY LASER; 4.2. MOLECULAR GAS LASERS FROM THE INFRARED REGION; 4.2.1. Lasers Operating on Rotational Transitions; 4.2.2. Lasers Operating on Vibrational-Rotational Transitions: CO2 and CO; 4.3. CHEMICAL LASERS; 4.4. SOLID-STATE LASERS; 4.4.1. Neodymium Laser and other Rare-Earth Lasers 327 $a4.4.2. Solid- State Tunable Lasers (Vibronic Lasers)4.4.3. Fiber Lasers; 4.5. GAS LASERS FOR THE VISIBLE RANGE; 4.5.1. Helium-Neon Laser; 4.5.2. Ion-Gas Lasers. Argon and Krypton Lasers; 4.6. LIQUID DYE LASERS; 4.7. GAS LASERS FOR THE ULTRAVIOLET RANGE; 4.7.1. Excimer Lasers; 4.7.2. Nitrogen Laser; 4.8. DIODE LASERS; 4.8.1. Intrinsic Semiconductors. Doped Semiconductors. Junction; 4.8.2. Diode Lasers; REFERENCES 4; 5. Nonlinear Optics; 5.1. SECOND ORDER NONLINEAR PHENOMENA; 5.2. PHASE MATCHING METHODS; 5.3. PRACTICAL ASPECTS OF THE SECOND HARMONIC GENERATION 327 $a5.3.1. SHG for Pico- and Femtosecond Pulses 5.4. PARAMETRIC OSCILLATOR; 5.5. THE THIRD ORDER NONLINEAR PROCESSES; 5.5.1. Stimulated Raman Scattering; 5.5.2. Coherent Anti-Stokes Raman Scattering (CARS); 5.5.3. The Other Techniques of Nonlinear Stimulated Raman Scattering; 5.6. NONLINEAR DISPERSION PHENOMENA AFFECTING PICOSECOND AND FEMTOSECOND PULSE DURATION - GROUP VELOCITY DISPERSION (GVD) AND SELF PHASE MODULATION (SPM); REFERENCES 5; 6. Pulse Amplification; 6.1. INTRODUCTION; 6.2. THEORETICAL BACKGROUND; 6.3. DESIGN FEATURES OF AMPLIFIERS; 6.4. REGENERATIVE AMPLIFIER 327 $a6.4.1. The Pockets Cell 6.5. CHIRPED PULSE AMPLIFICATION (CPA); REFERENCES 6; 7. The Measurement of Ultrashort Laser Pulses; 7.1. AUTOCORRELATION TECHNIQUES; 7.2. FROG TECHNIQUES; REFERENCES 7; 8. Selected Methods of Time-Resolved Laser Spectroscopy; 8.1. FLUORESCENCE DECAY; 8.2. THE PUMP-PROBE METHOD; 8.3. CARS AS A TIME-RESOLVED METHOD; 8.4. PHOTON ECHO; 8.4.1. Spin Echo in NMR; 8.4.2. Optical Resonance; 8.4.3. Quantum-Classical Description of the Photon Echo; 8.4.4. Practical Advantages of Photon Echo Applications; 8.5. QUANTUM BEATS; 8.5.1. Quantum Description 327 $a8.5.2. Examples of Quantum Beats Applications 330 $aIntroduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - 606 $aLaser spectroscopy$vTextbooks 606 $aSpectrum analysis 608 $aElectronic books. 615 0$aLaser spectroscopy 615 0$aSpectrum analysis. 676 $a535.8/4 700 $aAbramczyk$b Halina$0901259 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457297603321 996 $aIntroduction to laser spectroscopy$92014316 997 $aUNINA