LEADER 02532nam 2200589 a 450 001 9910457210103321 005 20200520144314.0 010 $a1-60086-211-X 010 $a1-60086-083-4 035 $a(CKB)2550000000072698 035 $a(EBL)3111544 035 $a(SSID)ssj0000646338 035 $a(PQKBManifestationID)12255998 035 $a(PQKBTitleCode)TC0000646338 035 $a(PQKBWorkID)10685096 035 $a(PQKB)11486615 035 $a(MiAaPQ)EBC3111544 035 $a(Au-PeEL)EBL3111544 035 $a(CaPaEBR)ebr10516648 035 $a(OCoLC)922978770 035 $a(EXLCZ)992550000000072698 100 $a19970403d1997 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroductory aerodynamics and hydrodynamics of wings and bodies$b[electronic resource] $ea software-based approach /$fFrederick O. Smetana 210 $aReston, Va. $cAmerican Institute of Aeronautics and Astronautics$dc1997 215 $a1 online resource (259 p.) 225 1 $aAIAA education series 300 $aDescription based upon print version of record. 311 $a1-56347-242-2 320 $aIncludes bibliographical references (p. 237-238) and index. 327 $a""Cover""; ""Title""; ""Copyright""; ""Table of Contents""; ""Preface""; ""Acknowledgement""; ""Chapter 1. The Atmosphere and the Ocean""; ""Chapter 2. Elementary Flow Functions""; ""Chapter 3. Airfoils and the Joukowski Transform""; ""Chapter 4. Drag, Viscosity, and the Boundary Layer""; ""Chapter 5. Direct Computation of Airfoil Characteristics""; ""Chapter 6. The Wing""; ""Chapter 7. Characteristics of Bodies at Small Angles of Attack""; ""Chapter 8. Characteristics of Wing Wakes""; ""Chapter 9. Computational Fluid Dynamics""; ""References""; ""Subject Index"" 410 0$aAIAA education series. 606 $aAerodynamics$xData processing 606 $aHydrodynamics$xData processing 606 $aAerofoils$xMathematical models$xData processing 608 $aElectronic books. 615 0$aAerodynamics$xData processing. 615 0$aHydrodynamics$xData processing. 615 0$aAerofoils$xMathematical models$xData processing. 676 $a629.132/3 700 $aSmetana$b Frederick O.$f1928-$0888560 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457210103321 996 $aIntroductory aerodynamics and hydrodynamics of wings and bodies$92144932 997 $aUNINA LEADER 04188nam 22007095 450 001 9910438143003321 005 20251113211435.0 010 $a1-299-19771-X 010 $a3-642-33871-2 024 7 $a10.1007/978-3-642-33871-7 035 $a(CKB)2670000000328005 035 $a(EBL)1082743 035 $a(OCoLC)826853745 035 $a(SSID)ssj0000854866 035 $a(PQKBManifestationID)11943578 035 $a(PQKBTitleCode)TC0000854866 035 $a(PQKBWorkID)10911465 035 $a(PQKB)11757476 035 $a(DE-He213)978-3-642-33871-7 035 $a(MiAaPQ)EBC1082743 035 $a(PPN)168325616 035 $a(EXLCZ)992670000000328005 100 $a20130125d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRegular Functions of a Quaternionic Variable /$fby Graziano Gentili, Caterina Stoppato, Daniele C. Struppa 205 $a1st ed. 2013. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2013. 215 $a1 online resource (202 p.) 225 1 $aSpringer Monographs in Mathematics,$x2196-9922 300 $aDescription based upon print version of record. 311 08$a3-642-44054-1 311 08$a3-642-33870-4 327 $aIntroduction -- 1.Definitions and Basic Results -- 2.Regular Power Series -- 3.Zeros -- 4.Infinite Products -- 5.Singularities -- 6.Integral Representations -- 7.Maximum Modulus Theorem and Applications -- 8.Spherical Series and Differential -- 9.Fractional Transformations and the Unit Ball -- 10.Generalizations and Applications -- Bibliography -- Index. 330 $aThe theory of slice regular functions over quaternions is the central subject of the present volume. This recent theory has expanded rapidly, producing a variety of new results that have caught the attention of the international research community. At the same time, the theory has already developed sturdy foundations. The richness of the theory of the holomorphic functions of one complex variable and its wide variety of applications are a strong motivation for the study of its analogs in higher dimensions. In this respect, the four-dimensional case is particularly interesting due to its relevance in physics and its algebraic properties, as the quaternion forms the only associative real division algebra with a finite dimension n>2. Among other interesting function theories introduced in the quaternionic setting, that of (slice) regular functions shows particularly appealing features. For instance, this class of functions naturally includes polynomials and power series. The zero set of a slice regular function has an interesting structure, strictly linked to a multiplicative operation, and it allows the study of singularities. Integral representation formulas enrich the theory and they are a fundamental tool for one of the applications, the construction of a noncommutative functional calculus. The volume presents a state-of-the-art survey of the theory and a brief overview of its generalizations and applications. It is intended for graduate students and researchers in complex or hypercomplex analysis and geometry, function theory, and functional analysis in general. 410 0$aSpringer Monographs in Mathematics,$x2196-9922 606 $aFunctions of complex variables 606 $aSequences (Mathematics) 606 $aFunctional analysis 606 $aFunctions of a Complex Variable 606 $aSequences, Series, Summability 606 $aFunctional Analysis 615 0$aFunctions of complex variables. 615 0$aSequences (Mathematics). 615 0$aFunctional analysis. 615 14$aFunctions of a Complex Variable. 615 24$aSequences, Series, Summability. 615 24$aFunctional Analysis. 676 $a512 700 $aGentili$b Graziano$053784 701 $aStoppato$b Caterina$01740141 701 $aStruppa$b Daniele C$042691 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438143003321 996 $aRegular Functions of a Quaternionic Variable$94165477 997 $aUNINA