LEADER 01116nam0-22003371i-450- 001 990000858540403321 005 20001010 010 $a0-7923-1890-0 035 $a000085854 035 $aFED01000085854 035 $a(Aleph)000085854FED01 035 $a000085854 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aDifferential and Integral Equations through Practical Problems and Exercises$fGheorghe Micula, Paraschiva Pavel 210 $aBoston ; Dordrecht ; London$cKluwer Academic$d1992 215 $aIX, 395 p.$d25 cm 225 1 $aKluwer Texts in the Mathematical Sciences$v7 610 0 $aDifferential and Integral Equations through Practical Problems and Exercises 676 $a515.35 700 1$aMicula,$bGheorghe$042351 702 1$aPavel,$bParaschiva 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000858540403321 952 $a02 32 D 31$b6542$fFINBN 959 $aFINBN 996 $aDifferential and Integral Equations through Practical Problems and Exercises$9349679 997 $aUNINA DB $aING01 LEADER 02867nam 2200613Ia 450 001 9910457115103321 005 20200520144314.0 010 $a1-282-44136-1 010 $a9786612441363 010 $a981-277-872-1 035 $a(CKB)2550000000000598 035 $a(EBL)477279 035 $a(OCoLC)609853436 035 $a(SSID)ssj0000366482 035 $a(PQKBManifestationID)11296480 035 $a(PQKBTitleCode)TC0000366482 035 $a(PQKBWorkID)10432963 035 $a(PQKB)11268283 035 $a(MiAaPQ)EBC477279 035 $a(WSP)00002038 035 $a(Au-PeEL)EBL477279 035 $a(CaPaEBR)ebr10361775 035 $a(CaONFJC)MIL244136 035 $a(EXLCZ)992550000000000598 100 $a20071223d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSymplectic elasticity$b[electronic resource] /$fWeian Yao, Wanxie Zhong, Chee Wah Lim 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific Publishing$dc2009 215 $a1 online resource (315 p.) 300 $aDescription based upon print version of record. 311 $a981-277-870-5 320 $aIncludes bibliographical references. 327 $aContents; Preface; Preface to the Chinese Edition; Foreword to the Chinese Edition; Nomenclature; 1. Mathematical Preliminaries; 2. Fundamental Equations of Elasticity and Variational Principle; 3. The Timoshenko Beam Theory and Its Extension; 4. Plane Elasticity in Rectangular Coordinates; 5. Plane Anisotropic Elasticity Problems; 6. Saint-Venant Problems for Laminated Composite Plates; 7. Solutions for Plane Elasticity in Polar Coordinates; 8. Hamiltonian System for Bending of Thin Plates; References; About the Authors 330 $aThis book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, w 606 $aElasticity 606 $aSymplectic spaces 608 $aElectronic books. 615 0$aElasticity. 615 0$aSymplectic spaces. 676 $a531/.382 700 $aYao$b Weian$0517191 701 $aLim$b Chee Wah$0517192 701 $aZhong$b Wanxie$0517124 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457115103321 996 $aSymplectic elasticity$9850225 997 $aUNINA