LEADER 03819nam 2200757 a 450 001 9910457109703321 005 20200520144314.0 010 $a1-4399-0368-9 010 $a9786612505744 010 $a1-282-50574-2 035 $a(CKB)2550000000019147 035 $a(EBL)496400 035 $a(OCoLC)780717297 035 $a(SSID)ssj0000356380 035 $a(PQKBManifestationID)11266650 035 $a(PQKBTitleCode)TC0000356380 035 $a(PQKBWorkID)10349590 035 $a(PQKB)11399848 035 $a(MiAaPQ)EBC496400 035 $a(OCoLC)609859181 035 $a(MdBmJHUP)muse15514 035 $a(Au-PeEL)EBL496400 035 $a(CaPaEBR)ebr10373413 035 $a(CaONFJC)MIL250574 035 $a(EXLCZ)992550000000019147 100 $a20050222d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe African American jeremiad$b[electronic resource] $eappeals for justice in America /$fDavid Howard-Pitney 205 $aRev. and expanded ed. 210 $aPhiladelphia $cTemple University Press$d2005 215 $a1 online resource (289 p.) 300 $aRev. ed. of: The Afro-American jeremiad. 1990. 311 $a1-59213-415-7 311 $a1-59213-328-2 320 $aIncludes bibliographical references (p. [229]-267 ) and index. 327 $aContents; Preface and Acknowledgments; Introduction: Civil Religion and the Anglo- and African American Jeremiads; 1. Frederick Douglass's Antebellum Jeremiad against Slavery and Racism; 2. The Brief Life of Douglass's "New Nation": From Emancipation-Reconstruction to Returning Declension, 1861-1895; 3. The Jeremiad in the Age of Booker T.Washington: Washington versus Ida B. Wells, 1895-1915; 4. Great Expectations: W. E. B. Du Bois's American Jeremiad in the Progressive Era; 5. Mary McLeod Bethune and W. E. B. Du Bois: Rising and Waning Hopes for America at Midcentury 327 $a6. Martin Luther King, Jr., and America's Promise in the Second Reconstruction, 1955-19657. Malcolm X: Jeremiah to Blacks, Damner of Whites-to the End?; 8. King's Radical Jeremiad, 1965-1968: America as the "Sick Society"; Conclusion: The Enduring Black Jeremiad; Notes; Index 330 $aBegun by Puritans, the American jeremiad, a rhetoric that expresses indignation and urges social change, has produced passionate and persuasive essays and speeches throughout the nation's history. Showing that black leaders have employed this verbal tradition of protest and social prophecy in a way that is specifically African American, David Howard-Pitney examines the jeremiads of Frederick Douglass, Booker T. Washington, Ida B. Wells, W.E.B. DuBois, Mary McLeod Bethune, Martin Luther King, Jr., and Malcolm X, as well as more contemporary figures such as Jesse Jackson and Alan Keyes. This rev 606 $aAfrican Americans$xHistory 606 $aAfrican American messianism$xHistory 606 $aSocial reformers$zUnited States$xHistory 606 $aPolitical messianism$zUnited States$xHistory 606 $aCivil religion$zUnited States$xHistory 606 $aJeremiads$zUnited States 607 $aUnited States$xSocial conditions 608 $aElectronic books. 615 0$aAfrican Americans$xHistory. 615 0$aAfrican American messianism$xHistory. 615 0$aSocial reformers$xHistory. 615 0$aPolitical messianism$xHistory. 615 0$aCivil religion$xHistory. 615 0$aJeremiads 676 $a973/.0496073 700 $aHoward-Pitney$b David$0926644 701 $aHoward-Pitney$b David$0926644 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910457109703321 996 $aThe African American jeremiad$92080806 997 $aUNINA LEADER 11994nam 22005773 450 001 9910768494903321 005 20240220084505.0 035 $a(CKB)5580000000694912 035 $a(MiAaPQ)EBC30752876 035 $a(Au-PeEL)EBL30752876 035 $a(OCoLC)1423223666 035 $a(Exl-AI)30752876 035 $a(EXLCZ)995580000000694912 100 $a20240220d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanobiohybrids for Advanced Wastewater Treatment and Energy Recovery 205 $a1st ed. 210 1$aLondon :$cIWA Publishing,$d2023. 210 4$d©2023. 215 $a1 online resource (244 pages) 225 1 $aIntegrated Environmental Technology Series 311 08$a9781789063585 311 08$a1789063582 311 08$a9781789063608 311 08$a1789063604 327 $aIntro -- Cover -- Contents -- List of Contributors -- Preface -- Part 1: Concepts of Microbial Synthesis, Water Purification and Energy Storage -- Chapter 1: Introduction to wastewater treatment and energy recovery -- 1.1 Introduction -- 1.2 Process Fundamentals -- 1.3 Building Blocks of NBs -- 1.4 Environmental Remediation -- 1.5 Wastewater Treatment -- References -- Chapter 2 : Addressing the global water crisis: a comprehensive review of nanobiohybrid applications for water purification -- 2.1 ? Introduction -- 2.2 ? Root Cause Behind Continuous Freshwater Shrinking -- 2.3 ? Methodical Handling of Water Pollution -- 2.3.1 ? Treatment technologies -- 2.3.2 ? Major drawbacks of current water purification techniques -- 2.4 ? Nanobiohybrid (NBIOH) Catalyst in Water Purification -- 2.4.1 ? Use of nanoparticles in water purification and their problems -- 2.4.2 ? Enzymes in water purification and their problems -- 2.4.3 ? Use of NBIOH catalyst for water purification -- 2.4.3.1 ? Capacity of NBIOH to treat water -- 2.4.3.2 ? Problems associated with nanobiohybrid -- 2.5 ? Conclusion -- References -- Chapter 3 : Biological production of nanoparticles and their application in photocatalysis -- 3.1 ? Introduction -- 3.2 ? Green Synthesis of Nanoparticles -- 3.3 ? Biological Nanoparticles -- 3.3.1 ? Plants -- 3.3.2 ? Bacteria -- 3.4 ? Fungi -- 3.5 ? Algae -- 3.6 ? Photocatalysis -- 3.6.1 ? Batch degradation of organic pollutants using NPs -- 3.6.2 ? Photobioreactors -- 3.6.3 ? Nanobiohybrids -- 3.7 ? Challenges -- 3.7.1 ? Toxicity -- 3.7.2 ? Nanoparticles detection -- 3.7.3 ? Light accessibility -- 3.8 ? Conclusion -- References -- Chapter 4 : Energy storage devices: batteries and supercapacitors -- 4.1 Introduction -- 4.2 Batteries: Principles and Operation -- 4.2.1 ? Battery basics. 327 $a4.2.1.1 ? Structure and components -- 4.2.1.2 ? Electrochemical reactions in batteries -- 4.2.2 ? Battery performance metrics -- 4.2.2.1 ? Cell, module, and pack level -- 4.2.2.2 ? Energy density -- 4.2.2.3 ? Power density -- 4.2.2.4 ? Specific energy (or gravimetric energy density) -- 4.2.2.5 ? Specific power (or gravimetric power density) -- 4.2.2.6 ? Cycle life -- 4.2.2.7 ? Charge-discharge efficiency -- 4.2.2.8 ? Self-discharge rate -- 4.2.2.9 ? Operating temperature -- 4.2.2.10 ? Impedance -- 4.2.2.11 ? Round-trip efficiency -- 4.3 Types of Batteries -- 4.3.1 ? Nickel-cadmium batteries -- 4.3.2 ? Lead-acid batteries -- 4.3.2.1 ? Lead-acid battery composition -- 4.3.2.2 ? Working principle of lead acid battery -- 4.3.2.3 ? Market perspective -- 4.3.3 ? Lithium-ion batteries -- 4.3.3.1 ? Lithium-ion battery composition -- 4.3.3.2 ? Working principle of lithium-ion battery -- 4.3.3.3 ? Market perspective -- 4.3.4 ? Sodium-ion batteries -- 4.3.5 ? Zinc-air batteries -- 4.4 Supercapacitors -- 4.4.1 ? Principles and operations -- 4.4.1.1 ? Electric double-layer capacitance -- 4.4.1.2 ? Faradaic capacitance -- 4.4.2 ? Supercapacitor electrode materials -- 4.4.2.1 ? Electrode materials for EDLC -- 4.4.2.2 ? Electrode materials for pseudocapacitor -- 4.4.2.3 ? Electrode materials for hybrid supercapacitor -- 4.5 Types of Supercapacitors -- 4.5.1 ? Electrochemical double-layer capacitors -- 4.5.2 ? Pseudocapacitors -- 4.5.3 ? Hybrid capacitor -- 4.6 Applications of Batteries and Supercapacitors -- 4.6.1 ? Portable electronics and consumer applications -- 4.6.2 ? Mobility of the future -- 4.6.2.1 ? Electric vehicles and hybrid vehicles -- 4.6.2.2 ? Aerospace applications -- 4.6.3 ? New energy technologies -- 4.6.3.1 ? Renewable energy integration. 327 $a4.6.3.2 ? Grid-scale energy storage -- 4.6.4 ? Defence application -- 4.7 Conclusion -- References -- Part 2: Utility of Organic, Inorganic and Magnetic Nanoparticles -- Chapter 5 : Nanobiohybrids using organic nanoparticles for applications in water and wastewater treatment -- 5.1 ? Introduction -- 5.2 ? Production of Nanobiohybrids -- 5.2.1 ? Nanohybrids based on cellulose -- 5.2.2 ? Nanohybrids based on gelatin -- 5.2.3 ? Nanohybrids based on chitosan -- 5.2.4 ? Nanohybrids based on pectin -- 5.2.5 ? Nanohybrid based on silk protein -- 5.3 ? Nanobiohybrid Applications in Water and Wastewater Treatment -- 5.3.1 ? Nanobiohybrids as adsorbent -- 5.3.2 ? Nanobiohybrids as catalyst (nanobiocatalysis) -- 5.3.2.1 ? Polymeric nanobiocatalyst -- 5.3.2.2 ? Silica-based nanobiocatalysts -- 5.3.2.3 ? Carbon-based nanobiocatalysts -- 5.3.2.4 ? Metal-based nanobiocatalysts -- 5.4 ? Conclusion -- References -- Chapter 6 : Assessing the feasibility of inorganic nanomaterials for nanohybrids formation -- 6.1 ? Introduction -- 6.1.1 ? Production of nanoparticles -- 6.1.2 ? Microbial nanohybrids -- 6.1.3 ? Nanohybrid materials for wastewater treatment with respect to microbes -- 6.2 ? Biosynthesis of Metal NPS with Different Microbes -- 6.2.1 ? Bacteria -- 6.2.2 ? Algae -- 6.2.3 ? Fungi -- 6.3 ? Feasibility of Microbe-Based Biogenic NPs for Wastewater Treatment -- 6.3.1 ? Use of biogenic NPs to treat wastewater -- 6.3.2 ? Biogenic inorganic NPs -- 6.3.2.1 ? Bio-Fe and Bio-Mn NPs -- 6.3.2.2 ? Bio-Pd NPs -- 6.3.2.3 ? Bio-Au and Bio-Ag NPs -- 6.3.2.4 ? Bio-bimetal NPs -- 6.3.2.5 ? Composite Bio-Me NPs -- 6.4 ? Conclusions -- Acknowledgement -- References -- Chapter 7 : Sustainable wastewater treatment using magnetic nanohybrids -- 7.1 ? Introduction -- 7.2 ? Source of Pollutants. 327 $a7.2.1 ? Ore extraction -- 7.2.2 ? Electroplating -- 7.2.3 ? Water pollution -- 7.2.3.1 ? Pharmaceutical waste -- 7.2.3.2 ? Dyes -- 7.2.4 ? Radionuclides -- 7.3 ? Sustainable Wastewater Treatment with Nanohybrids -- 7.4 ? Magnetic Nanohybrids Materials for Water Contaminant Removal -- 7.4.1 ? Preparation of magnetic nanohybrid materials -- 7.4.2 ? Magnetic nanohybrid development -- 7.4.3 ? Mechanism of adsorptive removal of pollutants using magnetic nanohybrid materials -- 7.5 ? Factors Influencing Adsorption by Magnetic Nanohybrid Adsorbent -- 7.6 ? Removal of Water Pollutants Based on Magnetic Nanohybrid Catalyst -- 7.6.1 ? Carbon-based magnetic nanohybrid adsorbents -- 7.6.1.1 ? Activated charcoal/biochar-based materials -- 7.6.1.2 ? Carbon nanotubes -- 7.6.1.3 ? Graphene-based nanoadsorbents -- 7.6.1.4 ? Chitosan-based magnetic nanohybrid catalyst -- 7.6.2 ? Metal-based magnetic nanohybrid catalyst -- 7.6.2.1 ? Zeolites -- 7.6.2.2 ? Multi-metals-based magnetic nanohybrid catalyst -- 7.7 ? Future Prospectives with Challenges -- Acknowledgements -- References -- Chapter 8 : Feasibility of nanomaterials to support electroactive microbes in nanobiohybrids -- 8.1 Introduction -- 8.2 Inherent Bottlenecks for Electron Transfer in Natural EAB Cells -- 8.3 Nanomaterial Selection for Constructing Efficient Nanobiohybrids -- 8.3.1 ? Favorable electrical conductivity of NMs -- 8.3.1.1 ? Metal/metal oxide-based NPs and conductive carbon-based NMs -- 8.3.1.2 ? Conductive organic nanopolymers -- 8.3.2 ? Large specific surface area of NMs -- 8.3.3 ? Photocatalysis capability of NMs -- 8.3.3.1 ? Metal-based semiconductor NPs -- 8.3.3.2 ? Carbon-based semiconductor NPs -- 8.3.4 ? NMs stimulate production of cellular components related to electron transfer. 327 $a8.3.4.1 ? Increased production of c-Cyts in the presence of NMs -- 8.3.4.2 ? Increased EPS production in the presence of NMs -- 8.3.5 ? Special functionalized NMs used for cytoprotection in engineered nanobiohybrids -- 8.3.5.1 ? Biomimetic inorganic NPs -- 8.3.5.2 ? Nano-hydrogels -- 8.3.5.3 ? Hybrid coordination NMs -- 8.3.5.4 ? Artificial nanoenzymes -- 8.4 Assembly Protocols and Synthetic Strategies Employed for Different Functional Nanobiohybrid Systems -- 8.4.1 ? Internal bioaugmentation on an individual cell scale -- 8.4.2 ? External bioaugmentation on an individual cell scale -- 8.4.3 ? External bioaugmentation on the biofilm scale -- 8.5 Future Directions -- 8.5.1 ? Present challenges for nanobiohybrid development -- 8.5.2 ? Outlook for nanobiohybrid development -- Acknowledgments -- References -- Part 3: Environmental Remediation Using NBs -- Chapter 9 : Nanobiohybrids: a promising approach for sensing diverse environmental water pollutants -- 9.1 ? Introduction -- 9.2 ? Importance of Nanomaterials in the Nanobiohybrids -- 9.3 ? Choice of Nanomaterial -- 9.3.1 ? Metallic and metal oxide nanostructures -- 9.3.2 ? Carbonaceous nanomaterials -- 9.3.3 ? Quantum dots -- 9.3.4 ? Polymers -- 9.4 ? Nanobiohybrid Types: Based on Recognition Elements -- 9.4.1 ? Proteins and peptides -- 9.4.2 ? Nucleic acids -- 9.4.3 ? Carbohydrates -- 9.4.4 ? Whole cells -- 9.5 ? Nanobiohybrid Sensor Types Based on Transduction Pathways -- 9.5.1 ? Electrochemical nanobiohybrid sensors -- 9.5.2 ? Optical nanobiohybrid sensors -- 9.5.3 ? Magnetic nanobiohybrid sensors -- 9.5.4 ? Gravimetric nanobiohybrid sensors -- 9.5.5 ? Calorimetric nanobiohybrid sensors -- 9.6 ? Conclusion -- References -- Chapter 10 : Unlocking the potential of nanobiohybrids to combat environmental pollution -- 10.1 Introduction. 327 $a10.1.1 ? Need for environmental bioremediation. 330 $aThis book, edited by Piet N.L. Lens and Priyanka Uddandarao, explores advanced techniques in wastewater treatment and energy recovery, focusing on integrated environmental technology. It provides an in-depth analysis of the use of nanotechnology and biotechnology in water purification and energy storage. The text discusses the synthesis of nanocatalysts, the role of electroactive bacteria, and the implications for environmental remediation. Aimed at researchers, students, and policymakers, it serves as a comprehensive resource on the intersection of nanoscience and environmental engineering, emphasizing the importance of sustainable solutions for pollution control and resource recovery.$7Generated by AI. 410 0$aIntegrated Environmental Technology Series 606 $aNanotechnology$7Generated by AI 606 $aGreen technology$7Generated by AI 615 0$aNanotechnology 615 0$aGreen technology 676 $a628.35 700 $aLens$b P. N. L$g(Piet N. L.)$0308358 701 $aUddandarao$b Priyanka$01592457 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910768494903321 996 $aNanobiohybrids for Advanced Wastewater Treatment and Energy Recovery$93910256 997 $aUNINA