LEADER 02835nam 2200661Ia 450 001 9910456900103321 005 20200520144314.0 010 $a1-282-44094-2 010 $a9786612440946 010 $a981-281-905-3 035 $a(CKB)2550000000001847 035 $a(EBL)477134 035 $a(OCoLC)557658082 035 $a(SSID)ssj0000337615 035 $a(PQKBManifestationID)11929326 035 $a(PQKBTitleCode)TC0000337615 035 $a(PQKBWorkID)10293166 035 $a(PQKB)10563801 035 $a(MiAaPQ)EBC477134 035 $a(WSP)00000854 035 $a(Au-PeEL)EBL477134 035 $a(CaPaEBR)ebr10361799 035 $a(CaONFJC)MIL244094 035 $a(EXLCZ)992550000000001847 100 $a20080910d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFat manifolds and linear connections$b[electronic resource] /$fAlessandro De Paris, Alexandre Vinogradov 210 $aHackensack, NJ $cWorld Scientific$dc2009 215 $a1 online resource (310 p.) 300 $aDescription based upon print version of record. 311 $a981-281-904-5 320 $aIncludes bibliographical references (p. 281-282) and index. 327 $aPreface; Foreword; Contents; 0. Elements of Differential Calculus over Commutative Algebras; 1. Basic Differential Calculus on Fat Manifolds; 2. Linear Connections; 3. Covariant Differential; 4. Cohomological Aspects of Linear Connections; Bibliography; List of Symbols; Index 330 $aIn this unique book, written in a reasonably self-contained manner, the theory of linear connections is systematically presented as a natural part of differential calculus over commutative algebras. This not only makes easy and natural numerous generalizations of the classical theory and reveals various new aspects of it, but also shows in a clear and transparent manner the intrinsic structure of the associated differential calculus. The notion of a "fat manifold" introduced here then allows the reader to build a well-working analogy of this "connection calculus" with the usual one. 606 $aDifferential calculus 606 $aCommutative algebra 606 $aManifolds (Mathematics) 606 $aAlgebras, Linear 608 $aElectronic books. 615 0$aDifferential calculus. 615 0$aCommutative algebra. 615 0$aManifolds (Mathematics) 615 0$aAlgebras, Linear. 676 $a515/.33 676 $a516.35 700 $aDe Paris$b Alessandro$0918503 701 $aVinogradov$b A. M$g(Aleksandr Mikhai?lovich)$0918504 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456900103321 996 $aFat manifolds and linear connections$92059643 997 $aUNINA