LEADER 03638oam 2200661I 450 001 9910456889203321 005 20200520144314.0 010 $a1-315-21891-7 010 $a1-282-49525-9 010 $a9786612495250 010 $a1-4200-6653-6 024 7 $a10.1201/9781315218915 035 $a(CKB)2520000000008637 035 $a(EBL)566053 035 $a(OCoLC)813225563 035 $a(SSID)ssj0000429997 035 $a(PQKBManifestationID)11282345 035 $a(PQKBTitleCode)TC0000429997 035 $a(PQKBWorkID)10451985 035 $a(PQKB)11512876 035 $a(MiAaPQ)EBC566053 035 $a(Au-PeEL)EBL566053 035 $a(CaPaEBR)ebr10367166 035 $a(CaONFJC)MIL249525 035 $a(OCoLC)677991442 035 $a(EXLCZ)992520000000008637 100 $a20180706d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aTransforms and applications handbook /$feditor, Alexander D. Poularikas 205 $a3rd ed. 210 1$aBoca Raton, Fla. :$cCRC Press,$d2011. 215 $a1 online resource (914 p.) 225 0 $aElectrical engineering handbook 300 $aDescription based upon print version of record. 311 $a1-4200-6652-8 320 $aIncludes bibliographical references and index. 327 $aFront cover; Contents; Preface to the Third Edition; Editor; Contributors; Chapter 1. Signals and Systems; Chapter 2. Fourier Transforms; Chapter 3. Sine and Cosine Transforms; Chapter 4. Hartley Transform; Chapter 5. Laplace Transforms; Chapter 6. Z-Transform; Chapter 7. Hilbert Transforms; Chapter 8. Radon and Abel Transforms; Chapter 9. Hankel Transform; Chapter 10. Wavelet Transform; Chapter 11. Finite Hankel Transforms, Legendre Transforms, Jacobi and Gegenbauer Transforms, and Laguerre and Hermite Transforms; Chapter 12. Mellin Transform 327 $aChapter 13. Mixed Time-Frequency Signal TransformationsChapter 14. Fractional Fourier Transform*; Chapter 15. Lapped Transforms; Chapter 16. Zak Transform; Chapter 17. Discrete Time and Discrete Fourier Transforms; Chapter 18. Discrete Chirp-Fourier Transform; Chapter 20. Empirical Mode Decomposition and the Hilbert-Huang Transform; Appendix A: Functions of a Complex Variable*; Appendix B: Series and Summations; Appendix C: Definite Integrals; Appendix D: Matrices and Determinants; Appendix E: Vector Analysis; Appendix F: Algebra Formulas and Coordinate Systems; Index; Back cover 330 $aUpdating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions.It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top 410 0$aElectrical engineering handbook series. 606 $aTransformations (Mathematics)$vHandbooks, manuals, etc 606 $aAlgorithms 608 $aElectronic books. 615 0$aTransformations (Mathematics) 615 0$aAlgorithms. 676 $a515/.723 701 $aPoularikas$b Alexander D.$f1933-$027682 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456889203321 996 $aTransforms and applications handbook$92199521 997 $aUNINA LEADER 05159nam 2200589 a 450 001 9910788569203321 005 20230725045530.0 010 $a1-283-14381-X 010 $a9786613143815 010 $a981-4282-45-6 035 $a(CKB)3360000000001325 035 $a(EBL)731217 035 $a(OCoLC)740444832 035 $a(SSID)ssj0000523212 035 $a(PQKBManifestationID)12178625 035 $a(PQKBTitleCode)TC0000523212 035 $a(PQKBWorkID)10557445 035 $a(PQKB)10412759 035 $a(MiAaPQ)EBC731217 035 $a(WSP)00007427 035 $a(Au-PeEL)EBL731217 035 $a(CaPaEBR)ebr10480003 035 $a(CaONFJC)MIL314381 035 $a(EXLCZ)993360000000001325 100 $a20110401d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHomogenization methods for multiscale mechanics$b[electronic resource] /$fChiang C. Mei, Bogdan Vernescu 210 $aHackensack, N.J. $cWorld Scientific$d2010 215 $a1 online resource (350 p.) 300 $aDescription based upon print version of record. 311 $a981-4282-44-8 320 $aIncludes bibliographical references and index. 327 $aIntroductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. 330 $aIn many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati 606 $aHomogenization (Differential equations) 606 $aMathematical physics 615 0$aHomogenization (Differential equations) 615 0$aMathematical physics. 676 $a515.3/53 700 $aMei$b Chiang C$030497 701 $aVernescu$b Bogdan$01515824 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788569203321 996 $aHomogenization methods for multiscale mechanics$93751837 997 $aUNINA