LEADER 04792nam 2200613Ia 450 001 9910456795403321 005 20200520144314.0 010 $a1-61324-561-0 035 $a(CKB)2550000000044249 035 $a(EBL)3018077 035 $a(SSID)ssj0000522422 035 $a(PQKBManifestationID)12150217 035 $a(PQKBTitleCode)TC0000522422 035 $a(PQKBWorkID)10527796 035 $a(PQKB)10786804 035 $a(MiAaPQ)EBC3018077 035 $a(Au-PeEL)EBL3018077 035 $a(CaPaEBR)ebr10658999 035 $a(OCoLC)923654618 035 $a(EXLCZ)992550000000044249 100 $a20110418d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEulerian codes for the numerical solution of the kinetic equations of plasmas$b[electronic resource] /$fMagdi Shoucri, editor 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2011 215 $a1 online resource (378 p.) 225 1 $aPhysics research and technology 300 $aDescription based upon print version of record. 311 $a1-61668-413-5 320 $aIncludes bibliographical references and index. 327 $a""EULERIAN CODES FOR THE NUMERICALSOLUTION OF THE KINETIC EQUATIONSOF PLASMAS""; ""CONTENTS""; ""EDITORa???S FOREWORD""; ""DEDICATION""; ""SPLITTING METHODS FOR VLASOV-MAXWELLEQUATIONS IN PLASMA SIMULATIONS""; ""Abstract""; ""IntroductiON""; ""Splitting Scheme""; ""Langmuir Soliton""; ""A. Electron Heating by Langmuir Soliton""; ""B. Propagation of Langmuir Soliton""; ""Electron Cyclotron Wave""; ""Conclusion""; ""References""; ""A VLASOV APPROACH TO COLLISIONLESS SPACEAND LABORATORY PLASMAS""; ""Abstract""; ""1. Introduction"" 327 $a""2. The Vlasova???Maxwell Equations as a Hamiltonian Flow onPhase Space""""3. Commonly Used Numerical Schemes""; ""3.1. Particle Methods""; ""3.3. A Comparison between Numerical Techniques""; ""4. The Vlasov Equation""; ""4.1. A Multi-advection Equation""; ""4.2. The Particles Motion, Electrostatic Limit""; ""4.3. Splitting Scheme""; ""4.4. Discrete Representation of the Distribution Function on FunctionalSpaces""; ""4.5. Discontinuous Galerkin Schemes""; ""4.6. Van Leer Interpolation""; ""4.7. Splines Interpolation""; ""4.8. Fourier Decomposition""; ""4.9. Semi-Lagrangian Methods"" 327 $a""5. An Application: The Weibel Instability""""Acknowledgements""; ""References""; ""EULERIAN CONSERVATIVE ADVECTION SCHEMESFOR VLASOV SOLVERS""; ""Abstract""; ""1. Introduction""; ""2. 1D Electrostatic Problems""; ""2.1. The Codes Tested""; ""2.2. 1D Electrostatic Test Problems""; ""2.3. Summary of 1D Electrostatic Tests""; ""3. Electromagnetic Problems""; ""3.1. 1D Relativistic EM Vlasov Solvers""; ""3.2. 2D Relativistic EM Vlasov Solvers""; ""4. Solving Amp`ere instead of Poisson""; ""5. Electrostatic Problems with Dissipation, Krook Collisionsand a Particle Source""; ""6. Conclusion"" 327 $a""References""""EULERIAN-LAGRANGIAN KINETIC SIMULATIONSOF LASER-PLASMA INTERACTIONS""; ""Abstract""; ""Introduction""; ""2. ELVIS Equations and Numerical Method""; ""2.1. Model and Geometry""; ""2.2. Structure of the Timestep""; ""2.3. f Advection: Cubic Splines""; ""2.4. Krook Operator""; ""2.5. Solving for Ex""; ""2.6. Advance of Transverse Fields EA?±, vys""; ""3. Electrostatic Application: Langmuir-Wave Dispersion""; ""4. Application to Raman Scattering""; ""4.1. Kinetic Inflation and Electron Acoustic Scatter (no Krook Operator)""; ""4.2. Inclusion of a Krook Operator"" 327 $a""4.3. Inclusion of Seed Bandwidth""""5. Conclusion""; ""Acknowledgments""; ""References""; ""GYROKINETIC VLASOV SIMULATIONSFOR TURBULENT TRANSPORTIN MAGNETIZED PLASMAS""; ""Abstract""; ""1. Introduction""; ""2. Vlasov Simulation Methods Based on Symplectic Integrators""; ""2.1. Generalization of Splitting Scheme""; ""2.2. Verification of Generalized Splitting Scheme""; ""2.3. Application to Drift Kinetic System""; ""2.4. Verification of Nondissipative Scheme for Drift Kinetic Systems""; ""3. Turbulent Transport and Fine-Scale Distribution Functions"" 327 $a""3.1. Steady and Quasisteady States of Plasma Turbulence"" 410 0$aPhysics research and technology. 606 $aKinetic theory of gases$xMathematics 606 $aPlasma (Ionized gases) 608 $aElectronic books. 615 0$aKinetic theory of gases$xMathematics. 615 0$aPlasma (Ionized gases) 676 $a530.4/4 701 $aShoucri$b Magdi Mounir$f1961-$0863768 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456795403321 996 $aEulerian codes for the numerical solution of the kinetic equations of plasmas$91927878 997 $aUNINA LEADER 01801nam 2200385z- 450 001 9910346893103321 005 20210211 010 $a1000028867 035 $a(CKB)4920000000101591 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/52521 035 $a(oapen)doab52521 035 $a(EXLCZ)994920000000101591 100 $a20202102d2012 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aA Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler 210 $cKIT Scientific Publishing$d2012 215 $a1 online resource (XXI, 412 p. p.) 311 08$a3-86644-885-6 330 $aThe Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine. 517 $aMachine-Checked, Type-Safe Model of Java Concurrency 517 $aA Machine-Checked, Type-Safe Model of Java Concurrency 610 $aconcurrency 610 $aformal semantics 610 $aJava 610 $amemory model 610 $atype safety 700 $aLochbihler$b Andreas$4auth$01312138 906 $aBOOK 912 $a9910346893103321 996 $aA Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler$93030734 997 $aUNINA