LEADER 05524nam 2200673Ia 450 001 9910456759203321 005 20200520144314.0 010 $a1-282-44268-6 010 $a9786612442681 010 $a981-4277-15-0 035 $a(CKB)2550000000001045 035 $a(EBL)477153 035 $a(OCoLC)593212992 035 $a(SSID)ssj0000415899 035 $a(PQKBManifestationID)11929424 035 $a(PQKBTitleCode)TC0000415899 035 $a(PQKBWorkID)10417523 035 $a(PQKB)10041231 035 $a(MiAaPQ)EBC477153 035 $a(WSP)00000489 035 $a(Au-PeEL)EBL477153 035 $a(CaPaEBR)ebr10361897 035 $a(CaONFJC)MIL244268 035 $a(EXLCZ)992550000000001045 100 $a20090227d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDifferential geometry applied to dynamical systems$b[electronic resource] /$fJean-Marc Ginoux 210 $aNew Jersey $cWorld Scientific$dc2009 215 $a1 online resource (341 p.) 225 0 $aWorld Scientific series on nonlinear science. Series A, Monographs and treatises,$x1793-1010 ;$vv. 66 300 $aDescription based upon print version of record. 311 $a981-4277-14-2 320 $aIncludes bibliographical references and index. 327 $aPreface; Acknowledgments; Contents; List of Figures; List of Examples; Dynamical Systems; 1. Differential Equations; 1.1 Galileo's pendulum; 1.2 D'Alembert transformation; 1.3 From differential equations to dynamical systems; 2. Dynamical Systems; 2.1 State space - phase space; 2.2 Definition; 2.3 Existence and uniqueness; 2.4 Flow, fixed points and null-clines; 2.5 Stability theorems; 2.5.1 Linearized system; 2.5.2 Hartman-Grobman linearization theorem; 2.5.3 Liapouno. stability theorem; 2.6 Phase portraits of dynamical systems; 2.6.1 Two-dimensional systems; 2.6.2 Three-dimensional systems 327 $a2.7 Various types of dynamical systems2.7.1 Linear and nonlinear dynamical systems; 2.7.2 Homogeneous dynamical systems; 2.7.3 Polynomial dynamical systems; 2.7.4 Singularly perturbed systems; 2.7.5 Slow-Fast dynamical systems; 2.8 Two-dimensional dynamical systems; 2.8.1 Poincare index; 2.8.2 Poincare contact theory; 2.8.3 Poincare limit cycle; 2.8.4 Poincare-Bendixson Theorem; 2.9 High-dimensional dynamical systems; 2.9.1 Attractors; 2.9.2 Strange attractors; 2.9.3 First integrals and Lie derivative; 2.10 Hamiltonian and integrable systems; 2.10.1 Hamiltonian dynamical systems 327 $a2.10.2 Integrable system2.10.3 K.A.M. Theorem; 3. Invariant Sets; 3.1 Manifold; 3.1.1 Definition; 3.1.2 Existence; 3.2 Invariant sets; 3.2.1 Global invariance; 3.2.2 Local invariance; 4. Local Bifurcations; 4.1 CenterManifold Theorem; 4.1.1 Center manifold theorem for flows; 4.1.2 Center manifold approximation; 4.1.3 Center manifold depending upon a parameter; 4.2 Normal FormTheorem.; 4.3 Local Bifurcations of Codimension 1; 4.3.1 Saddle-node bifurcation; 4.3.2 Transcritical bifurcation; 4.3.3 Pitchfork bifurcation; 4.3.4 Hopf bifurcation; 5. Slow-Fast Dynamical Systems; 5.1 Introduction 327 $a5.2 Geometric Singular Perturbation Theory5.2.1 Assumptions; 5.2.2 Invariance; 5.2.3 Slow invariant manifold; 5.3 Slow-fast dynamical systems - Singularly perturbed systems; 5.3.1 Singularly perturbed systems; 5.3.2 Slow-fast autonomous dynamical systems; 6. Integrability; 6.1 Integrability conditions, integrating factor, multiplier; 6.1.1 Two-dimensional dynamical systems; 6.1.2 Three-dimensional dynamical systems; 6.2 First integrals - Jacobi's last multiplier theorem; 6.2.1 First integrals; 6.2.2 Jacobi's last multiplier theorem; 6.3 Darboux theory of integrability 327 $a6.3.1 Algebraic particular integral - General integral6.3.2 General integral; 6.3.3 Multiplier; 6.3.4 Algebraic particular integral and fixed points; 6.3.5 Homogeneous polynomial dynamical systems of degree m; 6.3.6 Homogeneous polynomial dynamical systems of degree two; 6.3.7 Planar polynomial dynamical systems; Differential Geometry; 7. Differential Geometry; 7.1 Concept of curves - Kinematics vector functions; 7.1.1 Trajectory curve; 7.1.2 Instantaneous velocity vector; 7.1.3 Instantaneous acceleration vector; 7.2 Gram-Schmidt process - Generalized Fr ?enet moving frame 327 $a7.2.1 Gram-Schmidt process 330 $aThis book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory - or the flow - may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifyi 410 0$aWorld Scientific Series on Nonlinear Science: Series A, 66 606 $aDynamics 606 $aGeometry, Differential 608 $aElectronic books. 615 0$aDynamics. 615 0$aGeometry, Differential. 676 $a519 700 $aGinoux$b Jean-Marc$0895443 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456759203321 996 $aDifferential geometry applied to dynamical systems$92199145 997 $aUNINA