LEADER 02877nam 2200613Ia 450 001 9910456719503321 005 20200520144314.0 010 $a1-282-44286-4 010 $a9786612442865 010 $a981-283-896-1 035 $a(CKB)2550000000003164 035 $a(EBL)477152 035 $a(OCoLC)613387836 035 $a(SSID)ssj0000333930 035 $a(PQKBManifestationID)11297166 035 $a(PQKBTitleCode)TC0000333930 035 $a(PQKBWorkID)10378177 035 $a(PQKB)10740473 035 $a(MiAaPQ)EBC477152 035 $a(WSP)00002111 035 $a(Au-PeEL)EBL477152 035 $a(CaPaEBR)ebr10361582 035 $a(CaONFJC)MIL244286 035 $a(EXLCZ)992550000000003164 100 $a20090227d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAdvanced classical field theory$b[electronic resource] /$fGiovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2009 215 $a1 online resource (393 p.) 300 $aDescription based upon print version of record. 311 $a981-283-895-3 320 $aIncludes bibliographical references (p. 359-367) and index. 327 $aPreface; Contents; Introduction; 1. Differential calculus on fibre bundles; 2. Lagrangian field theory on fibre bundles; 3. Grassmann-graded Lagrangian field theory; 4. Lagrangian BRST theory; 5. Gauge theory on principal bundles; 6. Gravitation theory on natural bundles; 7. Spinor fields; 8. Topological field theories; 9. Covariant Hamiltonian field theory; 10. Appendixes; Bibliography; Index 330 $aContemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifo 606 $aField theory (Physics)$xMathematics 606 $aLagrange equations 608 $aElectronic books. 615 0$aField theory (Physics)$xMathematics. 615 0$aLagrange equations. 676 $a530.143 700 $aGiachetta$b G$061715 701 $aMangiarotti$b L$061716 701 $aSardanashvili$b G. A$g(Gennadii? Aleksandrovich)$0891943 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456719503321 996 $aAdvanced classical field theory$92085669 997 $aUNINA