LEADER 04685nam 2200601Ia 450 001 9910456498203321 005 20200520144314.0 010 $a1-61668-990-0 035 $a(CKB)2550000000010792 035 $a(EBL)3018275 035 $a(SSID)ssj0000417859 035 $a(PQKBManifestationID)11289038 035 $a(PQKBTitleCode)TC0000417859 035 $a(PQKBWorkID)10369149 035 $a(PQKB)11097840 035 $a(MiAaPQ)EBC3018275 035 $a(Au-PeEL)EBL3018275 035 $a(CaPaEBR)ebr10659197 035 $a(OCoLC)923657062 035 $a(EXLCZ)992550000000010792 100 $a20090501d2009 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFluid mechanics and pipe flow$b[electronic resource] $eturbulence, simulation, and dynamics /$fDonald Matos and Cristian Valerio, editors 210 $aNew York $cNova Science Publishers$d2009 215 $a1 online resource (483 p.) 300 $aDescription based upon print version of record. 311 $a1-60741-037-0 320 $aIncludes bibliographical references and index. 327 $a""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATION AND DYNAMICS""; ""FLUID MECHANICS AND PIPE FLOW:TURBULENCE, SIMULATIONAND DYNAMICS""; ""CONTENTS""; ""PREFACE""; ""SOLUTE TRANSPORT, DISPERSION, AND SEPARATIONIN NANOFLUIDIC CHANNELS""; ""Abstract""; ""1. Introduction""; ""2. Nomenclature""; ""3. Fluid Flow in Nanochannels""; ""3.1. Electroosmotic Flow""; ""3.2. Pressure-Driven Flow""; ""4. Solute Transport in Nanochannels""; ""5. Solute Dispersion in Nanochannels""; ""5.1. Electroosmotic Flow""; ""5.2. Pressure-Driven Flow""; ""5.3. Neutral Solutes"" 327 $a""6. Solute Separation in Nanochannels""""6.1. Selectivity""; ""6.2. Plate Height""; ""6.3. Resolution""; ""7. Conclusion""; ""References""; ""H2O IN THE MANTLE: FROM FLUID TO HIGH-PRESSURE HYDROUS SILICATES""; ""Abstract""; ""Introduction""; ""Samples and Collected Data""; ""Sample Description""; ""H2O Content in the Olivine Samples""; ""Extrinsic H2O in Olivine Samples""; ""Discussion""; ""Olivine as Water Storage in the Mantle""; ""Post-Crystallization H2O Behavior in Olivine""; ""H2O Fluid in Kimberlite Melt""; ""OH-Bearing Nanoinclusions and Intracrystalline H2O Fluid""; ""Conclusion"" 327 $a""References""""ON THE NUMERICAL SIMULATION OF TURBULENCE MODULATION IN TWO-PHASE FLOWS""; ""Abstract""; ""Introduction""; ""Conservation Equations""; ""3.1. Gas-Particle and Liquid-Particle Flows""; ""3.1.1. Governing Equations for Carrier Phase Modeling""; ""3.1.2. Governing Equations for Particulate Phase Modeling""; ""3.1.3. Turbulence Modeling for Carrier Phase""; ""3.1.4. Turbulence Modeling for the Dispersed Phase""; ""3.2. Liquid-Air Flows (Micro-bubble)""; ""3.2.1. Inhomogeneous Two-Fluid Model""; ""3.2.1.1. Mass Conservation""; ""3.2.1.2. Momentum Conservation"" 327 $a""3.2.1.3. Interfacial Area Density""""3.2.2. MUSIG Model""; ""3.2.2.1. MUSIG Break-up Rate""; ""3.2.2.2. MUSIG Coalescence Rate""; ""Numerical Procedure""; ""Numerical Predictions""; ""Gas Particle Flow""; ""4.1. Code Verification""; ""4.1.1. Mean Streamwise Velocities""; ""4.1.2. Mean Streamwise Fluctuations""; ""4.2. Results and Discussion""; ""4.2.1. Turbulence Modulation (TM)""; ""4.2.1.1. Analysis of Experimental Data""; ""4.2.2. TM & (Particle Number Density) PND Results""; ""4.2.3. Effect of Particle Reynolds Number on TM""; ""Liquid Particle Flow"" 327 $a""5.1. Analysis of Experimental Data""""5.2. Numerical Code Validation""; ""5.3. Results and Discussion""; ""5.4.1. Particle Response- Mean Velocity Level""; ""5.4.2. Particle Response-Turbulence Level""; ""5.4.3. Summary of Particulate Responsitivity""; ""Air-Liquid Flows""; ""6.1. Results and Discussion""; ""6.1.1. Experimental Validation (Inhomogeneous Model)""; ""6.1.2. Investigation of Mechanisms of Drag Reduction""; ""6.1.3. Turbulence Modulation (TM)""; ""6.1.3. Effect of Bubble Coalescence and Break-up in Drag Reduction""; ""Conclusion""; ""Untitled"" 327 $a""A REVIEW OF POPULATION BALANCE MODELLING FOR MULTIPHASE FLOWS: APPROACHES,APPLICATIONS AND FUTURE ASPECTS"" 606 $aFluid mechanics 606 $aPipe$xFluid dynamics 608 $aElectronic books. 615 0$aFluid mechanics. 615 0$aPipe$xFluid dynamics. 676 $a620.1/06 701 $aMatos$b Donald$0928478 701 $aValerio$b Cristian$0928479 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456498203321 996 $aFluid mechanics and pipe flow$92086822 997 $aUNINA LEADER 03396nam 2200517 450 001 9910817698303321 005 20210831165505.0 010 $a3-0356-0948-9 010 $a3-0356-0949-7 024 7 $a10.1515/9783035609493 035 $a(CKB)4100000003666368 035 $a(MiAaPQ)EBC5156724 035 $a(DE-B1597)470494 035 $a(OCoLC)1037980436 035 $a(DE-B1597)9783035609493 035 $a(Au-PeEL)EBL5156724 035 $a(CaPaEBR)ebr11605113 035 $a(OCoLC)1051139385 035 $a(EXLCZ)994100000003666368 100 $a20180921d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBuilding physics of the envelope $eprinciples of construction /$fUlrich Knaack, Eddie Koenders (editors) ; Elena Alexandrakis [and 4 others] 210 1$aBasel :$cBirkhauser,$d[2018] 210 4$d©2018 215 $a1 online resource (136 pages) 311 $a3-0356-1145-9 327 $tFrontmatter --$tContents --$t1 Introduction --$t2 Thermal Energy --$t3 Moisture --$t4 Airtightness --$t5 Acoustics --$t6 Light --$t7 Building Physics in Practice --$t8 Building Physics and Materials --$t9 Building Physics and the Building Envelope --$tAuthors --$tSelected bibliography --$tIndex --$tIllustration credits 330 $aDie Fassade ist die Schnittstelle des Gebäudes mit seiner Umwelt. Dort treffen bauphysikalische Parameter wie Wärme, Feuchte, Schall und Licht auf das Haus und wirken auf es ein. Alle diese Einflüsse bedürfen der Regulierung durch die Gebäudehülle, um Behaglichkeit für den Nutzer und Funktionstüchtigkeit der Architektur zu gewährleisten. Diese Einführung erläutert die wichtigsten Phänomene, um dann den Bezug zur Baupraxis herzustellen: Welche Materialien reagieren in welcher Weise auf diese Faktoren? Wie gehen Fassadensystemen mit Wärme, Feuchte, Schall und Licht um? Das praxisorientierte Buch, entstanden aus der Zusammenarbeit eines Architekten und eines Bauingenieurs, beschreibt die wichtigsten Fassadenmaterialien und -konstruktionen im Hinblick auf ihre bauphysikalische Performance. 330 $aThe facade is the building's interface with its environment. It is here that building physics parameters such as heat, humidity, sound and light interact with the building. All these influences need to be controlled by the building envelope in order to ensure the comfort of the user and the functional performance of the architecture. This introduction explains the most important phenomena and then relates them to design and building practice - which materials react in which way to these factors? How do facade systems deal with heat, humidity, sound and light? This practice-oriented book, which is the result of cooperation between an architect and a structural engineer, describes the most important facade materials and constructions under the aspect of their building physics performance. 606 $aSiding (Building materials) 615 0$aSiding (Building materials) 676 $a698 702 $aKnaack$b Ulrich 702 $aKoenders$b Eddie 702 $aAlexandrakis$b Elena 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817698303321 996 $aBuilding physics of the envelope$94092603 997 $aUNINA