LEADER 02746nam 2200601Ia 450 001 9910456466003321 005 20200520144314.0 010 $a1-282-44307-0 010 $a9786612443077 010 $a981-4277-28-2 035 $a(CKB)2550000000001395 035 $a(EBL)477125 035 $a(OCoLC)613343373 035 $a(SSID)ssj0000359054 035 $a(PQKBManifestationID)11278148 035 $a(PQKBTitleCode)TC0000359054 035 $a(PQKBWorkID)10378921 035 $a(PQKB)11553916 035 $a(MiAaPQ)EBC477125 035 $a(WSP)00000491 035 $a(Au-PeEL)EBL477125 035 $a(CaPaEBR)ebr10361770 035 $a(CaONFJC)MIL244307 035 $a(EXLCZ)992550000000001395 100 $a20090227d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDual sets of envelopes and characteristic regions of quasi-polynomials$b[electronic resource] /$fSui Sun Cheng, Yi-Zhong Lin 210 $aHackensack, NJ $cWorld Scientific$dc2009 215 $a1 online resource (236 p.) 300 $aDescription based upon print version of record. 311 $a981-4277-27-4 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; 1. Prologue; 2. Envelopes and Dual Sets; 3. Dual Sets of Convex-Concave Functions; 4. Quasi-Polynomials; 5. C\(0, )-Characteristic Regions of Real Polynomials; 6. C\(0,1)-Characteristic Regions of Real -Polynomials; 7. C\R-Characteristic Regions of r-Polynomials; Appendix A Intersections of Dual Sets of Order 0; Bibliography; Index 330 $aExistence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and s 606 $aFunctions, Special 606 $aPolynomials 608 $aElectronic books. 615 0$aFunctions, Special. 615 0$aPolynomials. 676 $a515.3 700 $aCheng$b S. S$g(Sui Sun)$0903077 701 $aLin$b Yizhong$f1955-$0903078 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456466003321 996 $aDual sets of envelopes and characteristic regions of quasi-polynomials$92018838 997 $aUNINA