LEADER 02613nam 2200553Ia 450 001 9910456364603321 005 20200520144314.0 010 $a1-283-13506-X 010 $a9786613135063 010 $a0-309-18720-6 035 $a(CKB)2550000000037272 035 $a(EBL)3564217 035 $a(SSID)ssj0000525352 035 $a(PQKBManifestationID)11327047 035 $a(PQKBTitleCode)TC0000525352 035 $a(PQKBWorkID)10507499 035 $a(PQKB)10045592 035 $a(MiAaPQ)EBC3564217 035 $a(Au-PeEL)EBL3564217 035 $a(CaPaEBR)ebr10478245 035 $a(CaONFJC)MIL313506 035 $a(OCoLC)929504807 035 $a(EXLCZ)992550000000037272 100 $a20110609d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aReview of the scientific approaches used during the FBI's investigation of the 2001 anthrax letters$b[electronic resource] /$fCommittee on Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Bacillus Anthracis Mailings ; National Research Council 210 $aWashington, DC $cNational Academies Press (NAP)$d2011 215 $a1 online resource (231 p.) 300 $aDescription based upon print version of record. 311 $a0-309-18719-2 327 $a""Front Matter""; ""Preface""; ""Acknowledgments""; ""Contents""; ""Tables, Boxes, Figures""; ""Summary""; ""1 Introduction""; ""2 Biology and History of Bacillus anthracis""; ""3 Scientific Investigation in a Law Enforcement Case and Description and Timeline of the FBI Scientific Investigation""; ""4 Physical and Chemical Analyses""; ""5 Microbiological and Genetic Analyses of Material in the Letters""; ""6 Comparison of the Material in the Letters with Samples in the FBI Repository""; ""Bibliography""; ""Index of Documents Provided by the Federal Bureau of Investigation"" 327 $a""Appendix A: Radiocarbon Dating""""Appendix B: The Forensics Potential of Stable Isotope Analysis""; ""Appendix C: Committee Evaluation of Statistical Analysis Report""; ""Appendix D: Biographical Information of Committee and Staff""; ""Index"" 606 $aBioterrorism 606 $aAnthrax 608 $aElectronic books. 615 0$aBioterrorism. 615 0$aAnthrax. 676 $a363.320973 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456364603321 996 $aReview of the scientific approaches used during the FBI's investigation of the 2001 anthrax letters$92014289 997 $aUNINA LEADER 07566nam 2200505 450 001 9910555167603321 005 20211014155059.0 010 $a3-527-82409-X 010 $a3-527-82411-1 010 $a3-527-82410-3 035 $a(CKB)4100000011810978 035 $a(MiAaPQ)EBC6524951 035 $a(Au-PeEL)EBL6524951 035 $a(OCoLC)1243533869 035 $a(EXLCZ)994100000011810978 100 $a20211014d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCO2 hydrogenation catalysis /$fedited by Yuichiro Himeda 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Incorporated,$d[2021] 210 4$d©2021 215 $a1 online resource (314 pages) $cillustrations 300 $aIncludes index. 311 $a3-527-34663-5 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century. 327 $a4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts. 327 $a7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity. 327 $a9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA. 606 $aCarbon dioxide 606 $aHydrogenation 608 $aElectronic books. 615 0$aCarbon dioxide. 615 0$aHydrogenation. 676 $a665.89 702 $aHimeda$b Yuichiro 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555167603321 996 $aCO2 hydrogenation catalysis$92817080 997 $aUNINA LEADER 04678nam 22007215 450 001 9910364951203321 005 20200703141323.0 010 $a3-030-32549-0 024 7 $a10.1007/978-3-030-32549-7 035 $a(CKB)4100000010013853 035 $a(MiAaPQ)EBC5996850 035 $a(DE-He213)978-3-030-32549-7 035 $a(PPN)242820549 035 $a(EXLCZ)994100000010013853 100 $a20191214d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInnovations and Breakthroughs in the Gold and Silver Industries $eConcepts, Applications and Future Trends /$fedited by Vaikuntam Iyer Lakshmanan, Barun Gorain 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (293 pages) 300 $aIncludes index. 311 $a3-030-32548-2 327 $aChapter 1. Key Challenges & Opportunities in the gold & silver industry -- Chapter 2. Ore body knowledge -- Chapter 3. Emerging trends in mining -- Chapter 4. Beneficiation of gold and silver ores -- Chapter 5. Gold & Silver Extraction -- Chapter 6. Waste Management in the gold and silver industry -- Chapter 7. Financing and new projects development -- Chapter 8. The economics of gold and silver -- Chapter 9. Recycling of gold and silver -- Chapter 10. Case Studies: Disruption in the mining industry -- Chapter 11. The Future of Gold and Silver industry -- Chapter 12. Digital Gold Crypto currency. . 330 $aThe book describes all aspects of technical innovation related to the gold and silver industries, from ore identification through to processing. It includes details of comminution, pre-concentration and beneficiation, commercially available and recently developed innovative pyro and hydrometallurgical processes, including leaching processes, separation and purification, and recovery and refining. The book focuses on capital and operating cost estimation, process simulation, waste remediation and minimization. Sustainable gold and silver processes are examined with the use of clean technologies and efficient use of energy and water. Topics such as supply and demand of gold and silver, their exchange in major global markets, and the factors that influence gold and silver prices and major economic indices are discussed. Presents emerging trends and innovations in the areas of ore body knowledge, mining, processing, waste management, economics, finance and automation; Describes emerging enablers for the gold and silver industries such as digitization, automation and remote operations; Promotes breakthroughs in mining, processing, waste management, energy and water from an integrated operations perspective. 606 $aMetals 606 $aMines and mineral resources 606 $aNatural resources 606 $aMaterials science 606 $aEngineering?Materials 606 $aWaste management 606 $aMetallic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z16000 606 $aMineral Resources$3https://scigraph.springernature.com/ontologies/product-market-codes/G38010 606 $aNatural Resource and Energy Economics$3https://scigraph.springernature.com/ontologies/product-market-codes/W48010 606 $aCharacterization and Evaluation of Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z17000 606 $aMaterials Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T28000 606 $aWaste Management/Waste Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/U31001 615 0$aMetals. 615 0$aMines and mineral resources. 615 0$aNatural resources. 615 0$aMaterials science. 615 0$aEngineering?Materials. 615 0$aWaste management. 615 14$aMetallic Materials. 615 24$aMineral Resources. 615 24$aNatural Resource and Energy Economics. 615 24$aCharacterization and Evaluation of Materials. 615 24$aMaterials Engineering. 615 24$aWaste Management/Waste Technology. 676 $a338.23 676 $a338.2741 702 $aLakshmanan$b Vaikuntam Iyer$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGorain$b Barun$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910364951203321 996 $aInnovations and Breakthroughs in the Gold and Silver Industries$91732548 997 $aUNINA