LEADER 01992nam 2200577Ia 450 001 9910456243603321 005 20200520144314.0 010 $a1-280-20380-3 010 $a9786610203802 010 $a0-309-58330-6 010 $a0-585-08568-4 035 $a(CKB)110986584751064 035 $a(OCoLC)647361307 035 $a(CaPaEBR)ebrary10055632 035 $a(SSID)ssj0000215447 035 $a(PQKBManifestationID)11912251 035 $a(PQKBTitleCode)TC0000215447 035 $a(PQKBWorkID)10185000 035 $a(PQKB)11149985 035 $a(MiAaPQ)EBC3376412 035 $a(Au-PeEL)EBL3376412 035 $a(CaPaEBR)ebr10055632 035 $a(CaONFJC)MIL20380 035 $a(OCoLC)923263557 035 $a(EXLCZ)99110986584751064 100 $a19911017d1991 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aOpportunities and priorities in arctic geoscience$b[electronic resource] /$fCommittee on Arctic Solid-Earth Geosciences, Polar Research Board, Commission on Geosciences, Environment, and Resources, National Research Council 210 $aWashington, D.C. $cNational Academy Press$d1991 215 $a1 online resource (79 p.) 300 $aSupport provided jointly by the Department of the Interior, U.S. Geological Survey, the National Science Foundation, the Department of Energy, and the Arthur Day Fund. 300 $aCommittee chairman: Arthur Grantz. 311 $a0-309-04485-5 320 $aIncludes bibliographical references (p. 61-67). 606 $aGeology$zArctic regions 607 $aArctic regions$xResearch 608 $aElectronic books. 615 0$aGeology 676 $a559.8/072 701 $aGrantz$b Arthur$f1927-$0933564 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456243603321 996 $aOpportunities and priorities in arctic geoscience$92101781 997 $aUNINA LEADER 02873oam 2200637I 450 001 9910459810403321 005 20200520144314.0 010 $a1-283-10478-4 010 $a9786613104786 010 $a1-136-83896-1 010 $a0-203-83281-7 024 7 $a10.4324/9780203832813 035 $a(CKB)2670000000081907 035 $a(EBL)668392 035 $a(OCoLC)764571319 035 $a(SSID)ssj0000470014 035 $a(PQKBManifestationID)11321131 035 $a(PQKBTitleCode)TC0000470014 035 $a(PQKBWorkID)10530913 035 $a(PQKB)11745132 035 $a(MiAaPQ)EBC668392 035 $a(Au-PeEL)EBL668392 035 $a(CaPaEBR)ebr10471809 035 $a(CaONFJC)MIL310478 035 $a(OCoLC)713558642 035 $a(EXLCZ)992670000000081907 100 $a20180706d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHIV/AIDS, health and the media in China $eimagined immunity through racialized disease /$fJohanna Hood 210 1$aLondon ;$aNew York :$cRoutledge,$d2011. 215 $a1 online resource (257 p.) 225 1 $aMedia, culture, and social change in Asia ;$v23 300 $aDescription based upon print version of record. 311 $a0-415-86073-3 311 $a0-415-47198-2 320 $aIncludes bibliographical references and index. 327 $aAt the intersections of HIV/AIDS : power, disease, others, and China's media -- China's media : telling and knowing HIV/AIDS -- Differentiating understandings : hei black and blackness, race, and place -- Hei : Africa, Africans, and HIV/AIDS -- Yuanshi : presenting the origin and primitive circumstances of HIV/AIDS in Africa -- Kexue : scientism and HIV/AIDS. 330 $aHIV/AIDS is an increasingly serious problem in China, with an increasing number of new cases every year. As a result, HIV organizations have boomed, with both state and non-governmental organisations responding to the threat with campaigns to increase public awareness of the disease, utilising the media as the primary tool to reshape citizens' understandings and views of HIV/AIDS. This book explores how HIV/AIDS is portrayed in China's media. It argues that, despite increasing education campaigns, media coverage and social and academic openness towards HIV/AIDS, many Chinese of the majority 410 0$aMedia, culture, and social change in Asia series ;$v23. 606 $aAIDS (Disease)$zChina 606 $aAIDS (Disease) in mass media$zChina 608 $aElectronic books. 615 0$aAIDS (Disease) 615 0$aAIDS (Disease) in mass media 676 $a362.196/979200951 700 $aHood$b Johanna.$0948825 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910459810403321 996 $aHIV$92144833 997 $aUNINA LEADER 05480nam 2200673 a 450 001 9910139240703321 005 20200520144314.0 010 $a1-118-62265-0 010 $a1-299-31564-X 010 $a1-118-62184-0 035 $a(CKB)2560000000100645 035 $a(EBL)1143632 035 $a(OCoLC)830161622 035 $a(SSID)ssj0000833189 035 $a(PQKBManifestationID)11462172 035 $a(PQKBTitleCode)TC0000833189 035 $a(PQKBWorkID)10935358 035 $a(PQKB)10079437 035 $a(OCoLC)842854713 035 $a(MiAaPQ)EBC1143632 035 $a(Au-PeEL)EBL1143632 035 $a(CaPaEBR)ebr10671567 035 $a(CaONFJC)MIL462814 035 $a(PPN)188554025 035 $a(EXLCZ)992560000000100645 100 $a20101214d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aExtended finite element method for crack propagation$b[electronic resource] /$fSylvie Pommier ... [et al.] 210 $aLondon, U.K. $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (280 p.) 225 1 $aISTE 300 $aAdapted and updated from La simulation nume?rique de la propagation des fissures : milieux tridimensionnels, fonctions de niveau, e?le?ments finis e?tendus et crite?res e?nerge?tiques published 2009 in France by Hermes Science/Lavoisier. 311 $a1-84821-209-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; List of Symbols; Introduction; Chapter 1. Elementary Concepts of Fracture Mechanics; 1.1. Introduction; 1.2. Superposition principle; 1.3. Modes of crack straining; 1.4. Singular fields at cracking point; 1.4.1. Asymptotic solutions in Mode I; 1.4.2. Asymptotic solutions in Mode II; 1.4.3. Asymptotic solutions in Mode III; 1.4.4. Conclusions; 1.5. Crack propagation criteria; 1.5.1. Local criterion; 1.5.2. Energy criterion; 1.5.2.1. Energy release rate G 327 $a1.5.2.2. Relationship between G and stress intensity factors1.5.2.3. How the crack is propagated; 1.5.2.4. Propagation velocity; 1.5.2.5. Direction of crack propagation; Chapter 2. Representation of Fixed and Moving Discontinuities; 2.1. Geometric representation of a crack: a scale problem; 2.1.1. Link between the geometric representation of the crack and the crack model; 2.1.2. Link between the geometric representation of the crack and the numerical method used for crack growth simulation; 2.2. Crack representation by level sets; 2.2.1. Introduction; 2.2.2. Definition of level sets 327 $a2.2.3. Level sets discretization2.2.4. Initialization of level sets; 2.3. Simulation of the geometric propagation of a crack; 2.3.1. Some examples of strategies for crack propagation simulation; 2.3.2. Crack propagation modeled by level sets; 2.3.3. Numerical methods dedicated to level set propagation; 2.4. Prospects of the geometric representation of cracks; Chapter 3. Extended Finite Element Method X-FEM; 3.1. Introduction; 3.2. Going back to discretization methods; 3.2.1. Formulation of the problem and notations; 3.2.2. The Rayleigh-Ritz approximation; 3.2.3. Finite element method 327 $a3.2.4. Meshless methods.3.2.5. The partition of unity; 3.3. X-FEM discontinuity modeling; 3.3.1. Introduction, case of a cracked bar; 3.3.1.1. Case a: crack positioned on a node; 3.3.1.2. Case b: crack between two nodes; 3.3.2. Variants; 3.3.3. Extension to two-dimensional and three-dimensional cases; 3.3.4. Level sets within the framework of the eXtended finite element method; 3.4. Technical and mathematical aspects; 3.4.1. Integration; 3.4.2. Conditioning; 3.5. Evaluation of the stress intensity factors; 3.5.1. The Eshelby tensor and the J integral; 3.5.2. Interaction integrals 327 $a3.5.3. Considering volumic forces3.5.4. Considering thermal loading; Chapter 4. Non-linear Problems, Crack Growth by Fatigue; 4.1. Introduction; 4.2. Fatigue and non-linear fracture mechanics; 4.2.1. Mechanisms of crack growth by fatigue; 4.2.1.1. Crack growth mechanism at low ?KI; 4.2.1.2. Crack growth mechanisms at average or high ?KI; 4.2.1.3. Macroscopic crack growth rate and striation formation; 4.2.1.4. Fatigue crack growth rate of long cracks, Paris law; 4.2.1.5. Brief conclusions; 4.2.2. Confined plasticity and consequences for crack growth; 4.2.2.1. Irwin's plastic zones 327 $a4.2.2.2. Role of the T stress 330 $aNovel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the crack tip region are developed within this framework to account for non-linear effect in crack propagation. Applications for static or dynamics case are provided. 410 0$aISTE 606 $aFracture mechanics$xMathematics 606 $aFinite element method 615 0$aFracture mechanics$xMathematics. 615 0$aFinite element method. 676 $a620.1/1260151825 701 $aPommier$b Sylvie$0934066 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139240703321 996 $aExtended finite element method for crack propagation$92103025 997 $aUNINA