LEADER 13371nam 2200745 a 450 001 9910455872703321 005 20200520144314.0 010 $a1-62198-164-9 010 $a1-84973-098-9 035 $a(CKB)2480000000006813 035 $a(EBL)1185176 035 $a(OCoLC)823728351 035 $a(SSID)ssj0000578383 035 $a(PQKBManifestationID)12225699 035 $a(PQKBTitleCode)TC0000578383 035 $a(PQKBWorkID)10578236 035 $a(PQKB)10084608 035 $a(MiAaPQ)EBC1185176 035 $a(PPN)198471920 035 $a(Au-PeEL)EBL1185176 035 $a(CaPaEBR)ebr10627698 035 $a(CaONFJC)MIL872472 035 $a(EXLCZ)992480000000006813 100 $a20120411d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aApplied thermodynamics of fluids$b[electronic resource] /$fedited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters 210 $aCambridge $cRSC Pub.$dc2010 215 $a1 online resource (535 p.) 300 $aDescription based upon print version of record. 311 $a1-84755-806-2 320 $aIncludes bibliographical references and index. 327 $gMachine generated contents note:$gch. 1$tIntroduction /$rJ. Peters --$tReferences --$gch. 2$tFundamental Considerations /$rCor J. Peters --$g2.1.$tIntroduction --$g2.2.$tBasic Thermodynamics --$g2.2.1.$tHomogeneous Functions --$g2.2.2.$tThermodynamic Properties from Differentiation of Fundamental Equations --$g2.3.$tDeviation Functions --$g2.3.1.$tResidual Functions --$g2.3.2.$tEvaluation of Residual Functions --$g2.4.$tMixing and Departure Functions --$g2.4.1.$tDeparture Functions with Temperature, Molar Volume and Composition as the Independent Variables --$g2.4.2.$tDeparture Functions with Temperature, Pressure and Composition as the Independent Variables --$g2.5.$tMixing and Excess Functions --$g2.6.$tPartial Molar Properties --$g2.7.$tFugacity and Fugacity Coefficients --$g2.8.$tActivity Coefficients --$g2.9.$tThe Phase Rule --$g2.10.$tEquilibrium Conditions --$g2.10.1.$tPhase Equilibria --$g2.10.2.$tChemical Equilibria --$g2.11.$tStability and the Critical State --$g2.11.1.$tDensities and Fields --$g2.11.2.$tStability. 327 $g2.11.3.$tCritical State --$tReferences --$gch. 3$tThe Virial Equation of State /$rJ. P. Martin Trusler --$g3.1.$tIntroduction --$g3.1.1.$tTemperature Dependence of the Virial Coefficients --$g3.1.2.$tComposition Dependence of the Virial Coefficients --$g3.1.3.$tConvergence of the Virial Series --$g3.1.4.$tThe Pressure Series --$g3.2.$tTheoretical Background --$g3.2.1.$tVirial Coefficients of Hard-Core-Square-Well Molecules --$g3.3.$tThermodynamic Properties of Gases --$g3.3.1.$tPerfect-gas and Residual Properties --$g3.3.2.$tHelmholtz Energy and Gibbs Energy --$g3.3.3.$tPerfect-Gas Properties --$g3.3.4.$tResidual Properties --$g3.4.$tEstimation of Second and Third Virial Coefficients --$g3.4.1.$tApplication of Intermolecular Potential-energy Functions --$g3.4.2.$tCorresponding-states Methods --$tReferences --$gch. 4$tCubic and Generalized van der Waals Equations of State /$rIoannis G. Economou --$g4.1.$tIntroduction --$g4.2.$tCubic Equation of State Formulation --$g4.2.1.$tThe van der Waals Equation of State (1873) --$g4.2.2.$tThe Redlich and Kwong Equation of State (1949). 327 $g4.2.3.$tThe Soave, Redlich and Kwong Equation of State (1972) --$g4.2.4.$tThe Peng and Robinson Equation of State (1976) --$g4.2.5.$tThe Patel and Teja (PT) Equation of State (1982) --$g4.2.6.$tThe α Parameter --$g4.2.7.$tVolume Translation --$g4.2.8.$tThe Elliott, Suresh and Donohue (ESD) Equation of State (1990) --$g4.2.9.$tHigher-Order Equations of State Rooted to the Cubic Equations of State --$g4.2.10.$tExtension of Cubic Equations of State to Mixtures --$g4.3.$tApplications --$g4.3.1.$tPure Components --$g4.3.2.$tOil and Gas Industry -- Hydrocarbons and Petroleum Fractions --$g4.3.3.$tChemical Industry -- Polar and Hydrogen Bonding Fluids --$g4.3.4.$tPolymers --$g4.3.5.$tTransport Properties --$g4.4.$tConclusions --$tReferences --$gch. 5$tMixing and Combining Rules /$rStanley I. Sandler --$g5.1.$tIntroduction --$g5.2.$tThe Virial Equation of State --$g5.3.$tCubic Equations of State --$g5.3.1.$tMixing Rules --$g5.3.2.$tCombining Rules --$g5.3.3.$tNon-Quadratic Mixing and Combining Rules --$g5.3.4.$tMixing Rules that Combine an Equation of State with an Activity-Coefficient Model. 327 $g5.4.$tMulti-Parameter Equations of State --$g5.4.1.$tBenedict, Webb, and Rubin Equation of State --$g5.4.2.$tGeneralization with the Acentric Factor --$g5.4.3.$tHelmholtz-Function Equations of State --$g5.5.$tMixing Rules for Hard Spheres and Association --$g5.5.1.$tMixing and Combining Rules for SAFT --$g5.5.2.$tCubic Plus Association Equation of State --$tReferences --$gch. 6$tThe Corresponding-States Principle /$rJames F. Ely --$g6.1.$tIntroduction --$g6.2.$tTheoretical Considerations --$g6.3.$tDetermination of Shape Factors --$g6.3.1.$tOther Reference Fluids --$g6.3.2.$tExact Shape Factors --$g6.3.3.$tShape Factors from Generalized Equations of State --$g6.4.$tMixtures --$g6.4.1.$tvan der Waals One-Fluid Theory --$g6.4.2.$tMixture Corresponding-States Relations --$g6.5.$tApplications of Corresponding-States Theory --$g6.5.1.$tExtended Corresponding-States for Natural Gas Systems --$g6.5.2.$tExtended Lee-Kesler --$g6.5.3.$tGeneralized Crossover Cubic Equation of State --$g6.6.$tConclusions --$tReferences --$gch. 7$tThermodynamics of Fluids at Meso and Nano Scales /$rChristopher E. Bertrand. 327 $g7.1.$tIntroduction --$g7.2.$tThermodynamic Approach to Meso-Heterogeneous Systems --$g7.2.1.$tEquilibrium Fluctuations --$g7.2.2.$tLocal Helmholtz Energy --$g7.3.$tApplications of Meso-Thermodynamics --$g7.3.1.$tVan der Waals Theory of a Smooth Interface --$g7.3.2.$tPolymer Chain in a Dilute Solution --$g7.3.3.$tBuilding a Nanoparticle Through Self Assembly --$g7.3.4.$tModulated Fluid Phases --$g7.4.$tMeso-Thermodynamics of Criticality --$g7.4.1.$tCritical Fluctuations --$g7.4.2.$tScaling Relations --$g7.4.3.$tNear-Critical Interface --$g7.4.4.$tDivergence of Tolman's Length --$g7.5.$tCompetition of Meso-Scales --$g7.5.1.$tCrossover to Tricriticality in Polymer Solutions --$g7.5.2.$tTolman's Length in Polymer Solutions --$g7.5.3.$tFinite-size Scaling --$g7.6.$tNon-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --$g7.6.1.$tRelaxation of Fluctuations --$g7.6.2.$tCritical Slowing Down --$g7.6.3.$tHomogeneous Nucleation --$g7.6.4.$tSpinodal Decomposition --$g7.7.$tConclusion --$tReferences --$gch. 8$tSAFT Associating Fluids and Fluid Mixtures /$rAmparo Galindo. 327 $g8.1.$tIntroduction --$g8.2.$tStatistical Mechanical Theories of Association and Wertheim's Theory --$g8.3.$tSAFT Equations of State --$g8.3.1.$tSAFT-HS and SAFT-HR --$g8.3.2.$tSoft-SAFT --$g8.3.3.$tSAFT-VR --$g8.3.4.$tPC-SAFT --$g8.3.5.$tSummary --$g8.4.$tExtensions of the SAFT Approach --$g8.4.1.$tModelling the Critical Region --$g8.4.2.$tPolar Fluids --$g8.4.3.$tIon-Containing Fluids --$g8.4.4.$tModelling Inhomogeneous Fluids --$g8.4.5.$tDense Phases: Liquid Crystals and Solids --$g8.5.$tParameter Estimation: Towards more Predictive Approaches --$g8.5.1.$tPure-component Parameter Estimation --$g8.5.2.$tUse of Quantum Mechanics in SAFT Equations of State --$g8.5.3.$tUnlike Binary Intermolecular Parameters --$g8.6.$tSAFT Group-Contribution Approaches --$g8.6.1.$tHomonuclear Group-Contribution Models in SAFT --$g8.6.2.$tHeteronuclear Group Contribution Models in SAFT --$g8.7.$tConcluding Remarks --$tReferences --$gch. 9$tPolydisperse Fluids /$rDieter Browarzik --$g9.1.$tIntroduction --$g9.2.$tInfluence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution. 327 $g9.3.$tApproaches to Polydispersity --$g9.3.1.$tThe Pseudo-component Method --$g9.3.2.$tContinuous Thermodynamics --$g9.4.$tApplication to Real Systems --$g9.4.1.$tPolymer Systems --$g9.4.2.$tPetroleum Fluids, Asphaltenes, Waxes and Other Applications --$g9.5.$tConclusions --$tReferences --$gch. 10$tThermodynamic Behaviour of Fluids near Critical Points /$rMikhail A. Anisimov --$g10.1.$tIntroduction --$g10.2.$tGeneral Theory of Critical Behaviour --$g10.2.1.$tScaling Fields, Critical Exponents, and Critical Amplitudes --$g10.2.2.$tParametric Equation of State --$g10.3.$tOne-Component Fluids --$g10.3.1.$tSimple Scaling --$g10.3.2.$tRevised Scaling --$g10.3.3.$tComplete Scaling --$g10.3.4.$tVapour-Liquid Equilibrium --$g10.3.5.$tSymmetric Corrections to Scaling --$g10.4.$tBinary Fluid Mixtures --$g10.4.1.$tIsomorphic Critical Behaviour of Mixtures --$g10.4.2.$tIncompressible Liquid Mixtures --$g10.4.3.$tWeakly Compressible Liquid Mixtures --$g10.4.4.$tCompressible Fluid Mixtures --$g10.4.5.$tDilute Solutions --$g10.5.$tCrossover Critical Behaviour --$g10.5.1.$tCrossover from Ising-like to Mean-Field Critical Behaviour. 327 $g10.5.2.$tEffective Critical Exponents --$g10.5.3.$tGlobal Crossover Behaviour of Fluids --$g10.6.$tDiscussion --$tAcknowledgements --$tReferences --$gch. 11$tPhase Behaviour of Ionic Liquid Systems /$rCor J. Peters --$g11.1.$tIntroduction --$g11.2.$tPhase Behaviour of Binary Ionic Liquid Systems --$g11.2.1.$tPhase Behaviour of (Ionic Liquid + Gas Mixtures) --$g11.2.2.$tPhase Behaviour of (Ionic Liquid + Water) --$g11.2.3.$tPhase Behaviour of (Ionic Liquid + Organic) --$g11.3.$tPhase Behaviour of Ternary Ionic Liquid Systems --$g11.3.1.$tPhase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --$g11.3.2.$tPhase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --$g11.3.3.$tPhase Behaviour of (Ionic Liquid + Water + Alcohol) --$g11.3.4.$tPhase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --$g11.4.$tModeling of the Phase Behaviour of Ionic Liquid Systems --$g11.4.1.$tMolecular Simulations --$g11.4.2.$tExcess Gibbs-energy Methods --$g11.4.3.$tEquation of State Modeling --$g11.4.4.$tQuantum Chemical Methods --$tReferences --$gch. 12$tMulti-parameter Equations of State for Pure Fluids and Mixtures /$rRoland Span. 327 $g12.1.$tIntroduction --$g12.2.$tThe Development of a Thermodynamic Property Formulation --$g12.3.$tFitting an Equation of State to Experimental Data --$g12.3.1.$tRecent Nonlinear Fitting Methods --$g12.4.$tPressure-Explicit Equations of State --$g12.4.1.$tCubic Equations --$g12.4.2.$tThe Benedict-Webb-Rubin Equation of State --$g12.4.3.$tThe Bender Equation of State --$g12.4.4.$tThe Jacobsen-Stewart Equation of State --$g12.4.5.$tThermodynamic Properties from Pressure-Explicit Equations of State --$g12.5.$tFundamental Equations --$g12.5.1.$tThe Equation of Keenan, Keyes, Hill, and Moore --$g12.5.2.$tThe Equations of Haar, Gallagher, and Kell --$g12.5.3.$tThe Equation of Schmidt and Wagner --$g12.5.4.$tReference Equations of Wagner --$g12.5.5.$tTechnical Equations of Span and of Lemmon --$g12.5.6.$tRecent Equations of State. 327 $aNote continued-- 327 $g13.6.$tConcluding Remarks --$tReferences --$gch. 14$tApplied Non-Equilibrium Thermodynamics /$rDick Bedeaux --$g14.1.$tIntroduction --$g14.1.1.$tA Systematic Thermodynamic Theory for Transport --$g14.1.2.$tOn the Validity of the Assumption of Local Equilibrium --$g14.1.3.$tConcluding remarks --$g14.2.$tFluxes and Forces from the Second Law of Thermodynamics --$g14.2.1.$tContinuous phases --$g14.2.2.$tMaxwell-Stefan Equations --$g14.2.3.$tDiscontinuous Systems --$g14.2.4.$tConcluding Remarks --$g14.3.$tChemical Reactions --$g14.3.1.$tThermal Diffusion in a Reacting System --$g14.3.2.$tMesoscopic Description Along the Reaction Coordinate --$g14.3.3.$tHeterogeneous Catalysis --$g14.3.4.$tConcluding Remarks --$g14.4.$tThe Path of Energy-Efficient Operation --$g14.4.1.$tAn Optimisation Procedure --$g14.4.2.$tOptimal Heat Exchange --$g14.4.3.$tThe Highway Hypothesis for a Chemical Reactor --$g14.4.4.$tEnergy-Efficient Production of Hydrogen Gas --$g14.4.$tConclusions --$tReferences. 330 $aPublished under the auspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid m 606 $aFluids$xThermal properties 608 $aElectronic books. 615 0$aFluids$xThermal properties. 676 $a530.42 676 $a541.369 701 $aGoodwin$b A. R. H$0857326 701 $aSengers$b J. V$0857327 701 $aPeters$b Cor J$0857328 712 02$aRoyal Society of Chemistry (Great Britain) 712 02$aInternational Union of Pure and Applied Chemistry.$bPhysical and Biophysical Chemistry Division. 712 02$aInternational Association of Chemical Thermodynamics. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455872703321 996 $aApplied thermodynamics of fluids$91914266 997 $aUNINA