LEADER 03012nam 2200601 a 450 001 9910455861403321 005 20200520144314.0 010 $a1-282-76190-0 010 $a9786612761904 010 $a981-4291-66-8 035 $a(CKB)2490000000001797 035 $a(EBL)731306 035 $a(OCoLC)671655101 035 $a(SSID)ssj0000430115 035 $a(PQKBManifestationID)11284820 035 $a(PQKBTitleCode)TC0000430115 035 $a(PQKBWorkID)10452832 035 $a(PQKB)10176812 035 $a(MiAaPQ)EBC731306 035 $a(WSP)00007561 035 $a(Au-PeEL)EBL731306 035 $a(CaPaEBR)ebr10422530 035 $a(CaONFJC)MIL276190 035 $a(EXLCZ)992490000000001797 100 $a20091005d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTruly nonlinear oscillations$b[electronic resource] $eharmonic balance, parameter expansions, iteration, and averaging methods /$fRonald E. Mickens 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2010 215 $a1 online resource (260 p.) 300 $aDescription based upon print version of record. 311 $a981-4291-65-X 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; List of Figures; List of Tables; 1. Background and General Comments; 2. Establishing Periodicity; 3. Harmonic Balance; 4. Parameter Expansions; 5. Iteration Methods; 6. Averaging Methods; 7. Comparative Analysis; Appendix A Mathematical Relations; Appendix B Gamma and Beta Functions; Appendix C Fourier Series; Appendix D Basic Theorems of the Theory of Second-Order Differential Equations; Appendix E Linear Second-Order Differential Equations; Appendix F Lindstedt-Poincar ?e Perturbation Method; Appendix G A Standard Averaging Method 327 $aAppendix H Discrete Models of Two TNL OscillatorsBibliography; Index 330 $aThis unique book provides a concise presentation of many of the fundamental strategies for calculating approximations to the oscillatory solutions of truly nonlinear (TNL) oscillator equations. The volume gives a general overview of the author's work on harmonic balance, iteration and combined linearization-averaging methods. However, full discussions are also presented on parameter expansion procedures and a first-order averaging technique for TNL oscillators. The calculational basis of each method is clarified by applying them to a set of standard TNL oscillator equations. This allows a dire 606 $aApproximation theory 606 $aNonlinear oscillations 608 $aElectronic books. 615 0$aApproximation theory. 615 0$aNonlinear oscillations. 676 $a511/.4 700 $aMickens$b Ronald E.$f1943-$0497093 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455861403321 996 $aTruly nonlinear oscillations$92287666 997 $aUNINA