LEADER 02440nam 2200637Ia 450 001 9910455779103321 005 20200520144314.0 010 $a1-280-17665-2 010 $a9786610176656 010 $a0-309-52838-0 035 $a(CKB)111087027010030 035 $a(OCoLC)61455334 035 $a(CaPaEBR)ebrary10051674 035 $a(SSID)ssj0000099324 035 $a(PQKBManifestationID)11116951 035 $a(PQKBTitleCode)TC0000099324 035 $a(PQKBWorkID)10007162 035 $a(PQKB)10584308 035 $a(MiAaPQ)EBC3375956 035 $a(Au-PeEL)EBL3375956 035 $a(CaPaEBR)ebr10051674 035 $a(CaONFJC)MIL17665 035 $a(OCoLC)923259323 035 $a(EXLCZ)99111087027010030 100 $a20031210d2004 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvancing the federal research agenda on violence against women$b[electronic resource] /$fSteering Committee for the Workshop on Issues in Research on Violence Against Women ; Candace Kruttschnitt, Brenda L. McLaughlin, and Carol V. Petrie, editors ; Committee on Law and Justice, Division of Behavioral and Social Sciences and Education, National Research Council of the National Academies 210 $aWashington, D.C. $cNational Academies Press$dc2004 215 $a1 online resource (143 p.) 300 $aBased on a workshop convened by the National Research Council in January 2. 311 $a0-309-09109-8 320 $aIncludes bibliographical references. 606 $aWomen$xCrimes against$zUnited States$vCongresses 606 $aWomen$xCrimes against$xResearch$zUnited States$vCongresses 606 $aWomen$xViolence against$zUnited States$vCongresses 606 $aWomen$xViolence against$xResearch$zUnited States$vCongresses 608 $aElectronic books. 615 0$aWomen$xCrimes against 615 0$aWomen$xCrimes against$xResearch 615 0$aWomen$xViolence against 615 0$aWomen$xViolence against$xResearch 676 $a362.88/082/0973 701 $aKruttschnitt$b Candace$01030801 701 $aMcLaughlin$b Brenda L$01030802 701 $aPetrie$b Carol$0895418 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455779103321 996 $aAdvancing the federal research agenda on violence against women$92447881 997 $aUNINA LEADER 01094nam a22002531i 4500 001 991000563069707536 005 20040930124529.0 008 041108s1972 uika||||||||||||||||eng 035 $ab13239272-39ule_inst 035 $aARCHE-117082$9ExL 040 $aDip.to Studi Storici$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a709.45 110 2 $aP. & D. Colnaghi & Co.$0324762 245 10$aArt in seventeenth century Italy /$cP. & D. Colnaghi & CoLtd. 14 Old Bond Street London WI, 13. April to 13. May 1972 260 $aLondon :$bP. & D. Colnaghi,$c[1972] 300 $a125 p. :$bill. ;$c21 cm 650 4$aArte$zItalia$ySec. 17. 907 $a.b13239272$b02-04-14$c12-11-04 912 $a991000563069707536 945 $aLE019 A3 AR G 14$g1$i2019000058162$lle019$op$pE15.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15108727$z12-04-10 945 $aLE019 A 778$g1$i2019000081375$lle019$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13928041$z12-11-04 996 $aArt in seventeenth century Italy$91101049 997 $aUNISALENTO 998 $ale019$b12-11-04$cm$da $e-$feng$guik$h0$i1 LEADER 05221nam 22006015 450 001 9910789221703321 005 20200701135537.0 010 $a1-4612-4372-6 024 7 $a10.1007/978-1-4612-4372-4 035 $a(CKB)3400000000090814 035 $a(SSID)ssj0000805503 035 $a(PQKBManifestationID)11419055 035 $a(PQKBTitleCode)TC0000805503 035 $a(PQKBWorkID)10854465 035 $a(PQKB)10966204 035 $a(DE-He213)978-1-4612-4372-4 035 $a(MiAaPQ)EBC3075264 035 $a(PPN)238068978 035 $a(EXLCZ)993400000000090814 100 $a20121227d1993 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aClassical Topology and Combinatorial Group Theory$b[electronic resource] /$fby John Stillwell 205 $a2nd ed. 1993. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1993. 215 $a1 online resource (XII, 336 p.) 225 1 $aGraduate Texts in Mathematics,$x0072-5285 ;$v72 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-97970-0 320 $aIncludes bibliographical references and index. 327 $a0 Introduction and Foundations -- 0.1 The Fundamental Concepts and Problems of Topology -- 0.2 Simplicial Complexes -- 0.3 The Jordan Curve Theorem -- 0.4 Algorithms -- 0.5 Combinatorial Group Theory -- 1 Complex Analysis and Surface Topology -- 1.1 Riemann Surfaces -- 1.2 Nonorientable Surfaces -- 1.3 The Classification Theorem for Surfaces -- 1.4 Covering Surfaces -- 2 Graphs and Free Groups -- 2.1 Realization of Free Groups by Graphs -- 2.2 Realization of Subgroups -- 3 Foundations for the Fundamental Group -- 3.1 The Fundamental Group -- 3.2 The Fundamental Group of the Circle -- 3.3 Deformation Retracts -- 3.4 The Seifert?Van Kampen Theorem -- 3.5 Direct Products -- 4 Fundamental Groups of Complexes -- 4.1 Poincaré?s Method for Computing Presentations -- 4.2 Examples -- 4.3 Surface Complexes and Subgroup Theorems -- 5 Homology Theory and Abelianization -- 5.1 Homology Theory -- 5.2 The Structure Theorem for Finitely Generated Abelian Groups -- 5.3 Abelianization -- 6 Curves on Surfaces -- 6.1 Dehn?s Algorithm -- 6.2 Simple Curves on Surfaces -- 6.3 Simplification of Simple Curves by Homeomorphisms -- 6.4 The Mapping Class Group of the Torus -- 7 Knots and Braids -- 7.1 Dehn and Schreier?s Analysis of the Torus Knot Groups -- 7.2 Cyclic Coverings -- 7.3 Braids -- 8 Three-Dimensional Manifolds -- 8.1 Open Problems in Three-Dimensional Topology -- 8.2 Polyhedral Schemata -- 8.3 Heegaard Splittings -- 8.4 Surgery -- 8.5 Branched Coverings -- 9 Unsolvable Problems -- 9.1 Computation -- 9.2 HNN Extensions -- 9.3 Unsolvable Problems in Group Theory -- 9.4 The Homeomorphism Problem -- Bibliography and Chronology. 330 $aIn recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec­ tions to other parts of mathematics which make topology an important as well as a beautiful subject. 410 0$aGraduate Texts in Mathematics,$x0072-5285 ;$v72 606 $aTopology 606 $aTopological groups 606 $aLie groups 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 615 0$aTopology. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aTopology. 615 24$aTopological Groups, Lie Groups. 676 $a514 676 $a514/.2 700 $aStillwell$b John$4aut$4http://id.loc.gov/vocabulary/relators/aut$041902 906 $aBOOK 912 $a9910789221703321 996 $aClassical topology and combinatorial group theory$9348503 997 $aUNINA