LEADER 02331nam 2200613 a 450 001 9910455562903321 005 20200520144314.0 010 $a1-282-76147-1 010 $a9786612761478 010 $a981-4287-27-X 035 $a(CKB)2490000000001738 035 $a(StDuBDS)AH24686441 035 $a(SSID)ssj0000424222 035 $a(PQKBManifestationID)12163060 035 $a(PQKBTitleCode)TC0000424222 035 $a(PQKBWorkID)10470208 035 $a(PQKB)10116609 035 $a(MiAaPQ)EBC1681659 035 $a(WSP)00000679 035 $a(Au-PeEL)EBL1681659 035 $a(CaPaEBR)ebr10422427 035 $a(CaONFJC)MIL276147 035 $a(OCoLC)630153547 035 $a(EXLCZ)992490000000001738 100 $a20100407d2010 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNorm derivatives and characterizations of inner product spaces$b[electronic resource] /$fClaudi Alsina, Justyna Sikorska, M. Santos Toma?s 210 $aSingapore $cWorld Scientific$dc2010 215 $a1 online resource (190 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-4287-26-1 320 $aIncludes bibliographical references and index. 327 $aNorm Derivatives; Characterizations of Inner Product Spaces; Orthogonality Relations; Norm Derivatives and Heights; Perpendicular Bisectors in Real Normed Spaces; Bisectrices in Real Normed Spaces; Areas of Triangles in Normed Real Spaces. 330 8 $aThis work provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. 606 $aNormed linear spaces 606 $aInner product spaces 608 $aElectronic books. 615 0$aNormed linear spaces. 615 0$aInner product spaces. 676 $a515.732 700 $aAlsina$b Claudi$0309455 701 $aSikorska$b Justyna$0731628 701 $aToma?s$b M. Santos$0731629 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455562903321 996 $aNorm derivatives and characterizations of inner product spaces$91441455 997 $aUNINA