LEADER 02487nam 2200601Ia 450 001 9910455550403321 005 20200520144314.0 010 $a981-283-455-9 035 $a(CKB)1000000000766724 035 $a(EBL)1193579 035 $a(SSID)ssj0000517210 035 $a(PQKBManifestationID)12181152 035 $a(PQKBTitleCode)TC0000517210 035 $a(PQKBWorkID)10487198 035 $a(PQKB)11534460 035 $a(MiAaPQ)EBC1193579 035 $a(WSP)00007007 035 $a(Au-PeEL)EBL1193579 035 $a(CaPaEBR)ebr10688172 035 $a(CaONFJC)MIL491737 035 $a(OCoLC)820944613 035 $a(EXLCZ)991000000000766724 100 $a20080721d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAxioms for lattices and boolean algebras$b[electronic resource] /$fR. Padmanabhan, S. Rudeanu 210 $aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (228 p.) 300 $aDescription based upon print version of record. 311 $a981-283-454-0 320 $aIncludes bibliographical references (p. 193-210) and index. 327 $a1. Semilattices and lattices -- 2. Modular lattices -- 3. Distributive lattices -- 4. Boolean algebras -- 5. Further topics and open problems. 330 $aThe importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of "join and meet" or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems.A new topic in t 606 $aLattice theory 606 $aAlgebra, Boolean 606 $aAxioms 608 $aElectronic books. 615 0$aLattice theory. 615 0$aAlgebra, Boolean. 615 0$aAxioms. 676 $a511.33 700 $aPadmanabhan$b R$g(Ranganathan),$f1938-$0887924 701 $aRudeanu$b Sergiu$042033 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455550403321 996 $aAxioms for lattices and boolean algebras$91983333 997 $aUNINA