LEADER 01901nam 2200565Ia 450 001 9910455132203321 005 20200520144314.0 010 $a1-280-20398-6 010 $a9786610203987 010 $a0-309-59769-2 010 $a0-585-15560-7 035 $a(CKB)111004366659580 035 $a(SSID)ssj0000187315 035 $a(PQKBManifestationID)11178304 035 $a(PQKBTitleCode)TC0000187315 035 $a(PQKBWorkID)10157644 035 $a(PQKB)11586929 035 $a(MiAaPQ)EBC3376555 035 $a(Au-PeEL)EBL3376555 035 $a(CaPaEBR)ebr10056829 035 $a(CaONFJC)MIL20398 035 $a(OCoLC)923264687 035 $a(EXLCZ)99111004366659580 100 $a19910411d1991 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aKidney failure and the federal government$b[electronic resource] /$fCommittee for the Study of the Medicare End-Stage Renal Disease Program, Division of Health Care Services, Institute of Medicine ; Richard A. Rettig and Norman G. Levinsky, editors 210 $aWashington, D.C. $cNational Academy Press$d1991 215 $axiv, 426 p. $cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-309-04432-4 320 $aIncludes bibliographical references and index. 606 $aChronic renal failure$xGovernment policy$zUnited States 606 $aMedicare 608 $aElectronic books. 615 0$aChronic renal failure$xGovernment policy 615 0$aMedicare. 676 $a362.1/9614/00973 701 $aRettig$b Richard A$0869711 701 $aLevinsky$b Norman G$g(Norman George),$f1929-$097813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455132203321 996 $aKidney failure and the federal government$92058959 997 $aUNINA LEADER 04858nam 22008055 450 001 9910360850603321 005 20251230061547.0 010 $a3-030-27550-7 024 7 $a10.1007/978-3-030-27550-1 035 $a(CKB)4100000009938025 035 $a(MiAaPQ)EBC5983849 035 $a(DE-He213)978-3-030-27550-1 035 $a(PPN)258059877 035 $a(MiAaPQ)EBC5983792 035 $a(EXLCZ)994100000009938025 100 $a20191122d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProgress in Industrial Mathematics at ECMI 2018 /$fedited by István Faragó, Ferenc Izsák, Péter L. Simon 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (605 pages) 225 1 $aThe European Consortium for Mathematics in Industry,$x2946-1871 ;$v30 311 08$a3-030-27549-3 327 $aPART I: Modeling of industrial processes -- PART II: Biological and medical models and applications -- PART III: Novel numerical methods for industrial mathematics -- PART IV: Optimization and control of industrial problems -- PART V: Processing and using measurements data in industrial problems -- Author index. 330 $aThis book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, andWavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry. 410 0$aThe European Consortium for Mathematics in Industry,$x2946-1871 ;$v30 606 $aMathematical physics 606 $aMathematical optimization 606 $aProbabilities 606 $aDiscrete mathematics 606 $aData structures (Computer science) 606 $aInformation theory 606 $aImage processing$xDigital techniques 606 $aComputer vision 606 $aMathematical Physics 606 $aOptimization 606 $aProbability Theory 606 $aDiscrete Mathematics 606 $aData Structures and Information Theory 606 $aComputer Imaging, Vision, Pattern Recognition and Graphics 615 0$aMathematical physics. 615 0$aMathematical optimization. 615 0$aProbabilities. 615 0$aDiscrete mathematics. 615 0$aData structures (Computer science). 615 0$aInformation theory. 615 0$aImage processing$xDigital techniques. 615 0$aComputer vision. 615 14$aMathematical Physics. 615 24$aOptimization. 615 24$aProbability Theory. 615 24$aDiscrete Mathematics. 615 24$aData Structures and Information Theory. 615 24$aComputer Imaging, Vision, Pattern Recognition and Graphics. 676 $a620.00151 686 $aTVU$2ghbs 702 $aFarago?$b I$g(Istva?n),$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aIzsák$b Ferenc$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSimon$b Péter L$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360850603321 996 $aProgress in Industrial Mathematics at ECMI 2018$91733503 997 $aUNINA