LEADER 03919nam 22007212 450 001 9910455060203321 005 20151005020622.0 010 $a1-107-11553-1 010 $a0-511-01917-3 010 $a1-280-42024-3 010 $a9786610420247 010 $a0-511-17532-9 010 $a0-511-15562-X 010 $a0-511-32881-8 010 $a0-511-61320-2 010 $a0-511-05095-X 035 $a(CKB)111056485648288 035 $a(EBL)202248 035 $a(OCoLC)437063477 035 $a(SSID)ssj0000268506 035 $a(PQKBManifestationID)11219113 035 $a(PQKBTitleCode)TC0000268506 035 $a(PQKBWorkID)10235588 035 $a(PQKB)11007028 035 $a(UkCbUP)CR9780511613203 035 $a(MiAaPQ)EBC202248 035 $a(PPN)189823976 035 $a(Au-PeEL)EBL202248 035 $a(CaPaEBR)ebr10006811 035 $a(CaONFJC)MIL42024 035 $a(EXLCZ)99111056485648288 100 $a20090914d2002|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aVorticity and incompressible flow /$fAndrew J. Majda, Andrea L. Bertozzi$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2002. 215 $a1 online resource (xii, 545 pages) $cdigital, PDF file(s) 225 1 $aCambridge texts in applied mathematics ;$v27 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-63948-4 311 $a0-521-63057-6 320 $aIncludes bibliographical references and index. 327 $aCover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 An Introduction to Vortex Dynamics for Incompressible Fluid Flows; 2 The Vorticity-Stream Formulation of the Euler and the Navier-Stokes Equations; 3 Energy Methods for the Euler and the Navier...Stokes Equations; 4 The Particle-Trajectory Method for Existence and Uniqueness of Solutions to the Euler Equation; 5 The Search for Singular Solutions to the 3-D Euler Equations; 6 Computational Vortex Methods; 7 Simplified Asymptotic Equations for Slender Vortex Filaments 327 $a8 Weak Solutions to the 2D Euler Equations with Initial Vorticity in L9 Introduction to Vortex Sheets, Weak Solutions, and Approximate-Solution Sequences for the Euler Equation; 10 Weak Solutions and Solution Sequences in Two Dimensions; 11 The 2D Euler Equation: Concentrations and Weak Solutions with Vortex-Sheet Initial Data; 12 Reduced Hausdorff Dimension, Oscillations, and Measure-Valued Solutions of the Euler Equations in Two and Three Dimensions; 13 The Vlasov...Poisson Equations as an Analogy to the Euler Equations for the Study of Weak Solutions; Index 330 $aThis book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. While the contents center on mathematical theory, many parts of the book showcase the interaction between rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprises a modern applied mathematics graduate course on the weak solution theory for incompressible flow. 410 0$aCambridge texts in applied mathematics ;$v27. 517 3 $aVorticity & Incompressible Flow 606 $aVortex-motion 606 $aNon-Newtonian fluids 615 0$aVortex-motion. 615 0$aNon-Newtonian fluids. 676 $a532/.059 700 $aMajda$b Andrew$f1949-$0477021 702 $aBertozzi$b Andrea L. 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910455060203321 996 $aVorticity and incompressible flow$9238561 997 $aUNINA