LEADER 02298nam 2200601 a 450 001 9910455056303321 005 20200520144314.0 010 $a0-8195-7198-9 010 $a9786613110053 010 $a1-283-11005-9 010 $a0-585-37148-2 035 $a(CKB)111004368627448 035 $a(EBL)776737 035 $a(OCoLC)767498329 035 $a(SSID)ssj0000142237 035 $a(PQKBManifestationID)11144010 035 $a(PQKBTitleCode)TC0000142237 035 $a(PQKBWorkID)10096519 035 $a(PQKB)10264738 035 $a(MiAaPQ)EBC776737 035 $a(OCoLC)727944958 035 $a(MdBmJHUP)muse9849 035 $a(Au-PeEL)EBL776737 035 $a(CaPaEBR)ebr10468396 035 $a(EXLCZ)99111004368627448 100 $a19891121d1990 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe eagle's mile$b[electronic resource] /$fJames Dickey 210 $a[Middletown, Conn.] $cWesleyan University Press ;$aHanover, N.H. $cUniversity Press of New England$dc1990 215 $a1 online resource (140 p.) 225 1 $aWesleyan poetry 300 $aDescription based upon print version of record. 311 $a0-8195-2185-X 311 $a0-8195-1187-0 327 $aCover; Half title; Title; Copyright; Dedication; Contents; Eagles; Gila Bend; Circuit; Night Bird; Daybreak; Two Women; Immortals; Earth; Air; Sea; To the Butterflies; The One; The Three; The Six; Weeds; Spring-Shock; The Eagle's Mile; Daughter; The Olympian; The Little More; For a Time and Place; Vessels; Sleepers; Meadow Bridge; Tomb Stone; To Be Done in Winter; Moon Flock; Snow Thickets; Expanses; Double-tongue: Collaborations and Rewrites; Lakes of Va?rmland; Form; Heads; Farmers; Craters; Attempted Departure; Poem; Purgation; Basics; Level; Simplex; Word 330 $aPoems that marked a new direction for a master poet 410 0$aWesleyan poetry. 606 $aAmerican poetry 608 $aElectronic books. 615 0$aAmerican poetry. 676 $a811/.54 700 $aDickey$b James$0744796 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910455056303321 996 $aThe eagle's mile$92457829 997 $aUNINA LEADER 01737nam 2200385 n 450 001 996390034803316 005 20200824132933.0 035 $a(CKB)1000000000648726 035 $a(EEBO)2264204558 035 $a(UnM)ocm99882983e 035 $a(UnM)99882983 035 $a(EXLCZ)991000000000648726 100 $a19860117d1679 uy 101 0 $aeng 135 $aurbn||||a|bb| 200 02$aA mild, but searching expostulatory letter from the poor and plain-dealing farmers of the neighbouring villages, to the men of Buckingham$b[electronic resource] $eTo the Right Worshipful the Bailiff, the Worshipful the Burgesses of the ancient, and sometimes famous corporation of Buckingham 210 $a[London $cs.n.$d1679] 215 $a1 sheet (2 p.) 300 $aSigned: S.T: R.W. &c. 300 $a"On a late election of Members of Parliament in which the Burgh is said to have acted illegally. The letter is most abusive in tone and foul in language." Cf. Crawford, J.L.L. Cat. of Engl. broadsides, 174. 300 $aImprint suggested by Wing. 300 $aReproduction of original in the British Library. 330 $aeebo-0018 607 $aGreat Britain$xHistory$yCharles II, 1660-1685$vEarly works to 1800 607 $aBuckinghamshire (England)$xPolitics and government$vEarly works to 1800 608 $aBroadsides$zEngland$zLondon$y17th century$2rbgenr 701 $aS. T$0821322 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bCu-RivES 906 $aBOOK 912 $a996390034803316 996 $aA mild, but searching expostulatory letter from the poor and plain-dealing farmers of the neighbouring villages, to the men of Buckingham$92325183 997 $aUNISA LEADER 04420nam 22005055 450 001 9910300137003321 005 20251116203514.0 010 $a1-4939-7887-X 024 7 $a10.1007/978-1-4939-7887-8 035 $a(CKB)4100000006671791 035 $a(MiAaPQ)EBC5517008 035 $a(DE-He213)978-1-4939-7887-8 035 $a(PPN)230537979 035 $a(EXLCZ)994100000006671791 100 $a20180914d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMotivic Integration /$fby Antoine Chambert-Loir, Johannes Nicaise, Julien Sebag 205 $a1st ed. 2018. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Birkhäuser,$d2018. 215 $a1 online resource (540 pages) 225 1 $aProgress in Mathematics,$x0743-1643 ;$v325 311 08$a1-4939-7885-3 327 $aIntroduction -- Prologue: p-adic Integration -- Analytic Manifolds -- The Theorem of Batyrev-Kontsevich -- Igusa's Local Zeta Function -- The Grothendieck Ring of Varieties -- Additive Invariants on Algebraic Varieties -- Motivic Measures -- Cohomolical Realizations -- Localization, Completion, and Modification -- The Theorem of Bittner -- The Theorem of Larsen?Lunts and Its Applications -- Arc Schemes -- Weil Restriction -- Jet Schemes -- The Arc Scheme of a Variety -- Topological Properties of Arc Schemes -- The Theorem of Grinberg?Kazhdan?Drinfeld -- Greenberg Schemes -- Complete Discrete Valuation Rings -- The Ring Schemes Rn -- Greenberg Schemes -- Topological Properties of Greenberg Schemes -- Structure Theoremes for Greenberg Schemes -- Greenberg Approximation on Formal Schemes -- The Structure of the Truncation Morphisms -- Greenberg Schemes and Morphisms of Formal Schemes -- Motivic Integration -- Motivic Integration in the Smooth Case -- The Volume of a Constructibel Subset -- Measurable Subsets of Greenberg Schemes -- Motivic Integrals -- Semi-algebraic Subsets of Greenberg Schemes -- Applications -- Kapranov's Motivic Zeta Function -- Valuations and the Space of Arcs -- Motivic Volume and Birational Invariants -- Denef-Loeser's Zeta Function and the Monodromy Conjecture -- Motivic Invariants of Non-Archimedean Analytic Spaces -- Motivic Zeta Functions of Formal Shemes and Analytic Spaces -- Motivic Serre Invariants of Algebraic Varieties -- Appendix -- Constructibility in Algebraic Geometry -- Birational Geometry -- Formal and Non-Archimedean Geometry -- Index -- Bibliography. 330 $aThis monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since. . 410 0$aProgress in Mathematics,$x0743-1643 ;$v325 606 $aGeometry, Algebraic 606 $aK-theory 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 615 0$aGeometry, Algebraic. 615 0$aK-theory. 615 14$aAlgebraic Geometry. 615 24$aK-Theory. 676 $a516.35 700 $aChambert-Loir$b Antoine$4aut$4http://id.loc.gov/vocabulary/relators/aut$0285206 702 $aNicaise$b Johannes$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSebag$b Julien$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300137003321 996 $aMotivic Integration$92070203 997 $aUNINA