LEADER 03325nam 2200637Ia 450 001 9910454401303321 005 20200520144314.0 010 $a1-281-95184-6 010 $a9786611951849 010 $a981-281-033-1 035 $a(CKB)1000000000538069 035 $a(EBL)1679403 035 $a(SSID)ssj0000242419 035 $a(PQKBManifestationID)11215422 035 $a(PQKBTitleCode)TC0000242419 035 $a(PQKBWorkID)10310782 035 $a(PQKB)11467164 035 $a(MiAaPQ)EBC1679403 035 $a(WSP)00004598 035 $a(Au-PeEL)EBL1679403 035 $a(CaPaEBR)ebr10255746 035 $a(OCoLC)815754738 035 $a(EXLCZ)991000000000538069 100 $a20010703d2001 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aScissors congruences, group homology and characteristic classes$b[electronic resource] /$fJohan L. Dupont 210 $aSingapore ;$aRiver Edge, NJ $cWorld Scientific$dc2001 215 $a1 online resource (178 p.) 225 1 $aNankai tracts in mathematics ;$v1 300 $aDescription based upon print version of record. 311 $a981-02-4507-6 320 $aIncludes bibliographical references (p. 159-165) and index. 327 $aPreface; Contents; Chapter 1. Introduction and History; Chapter 2. Scissors congruence group and homology; Chapter 3. Homology of flag complexes; Chapter 4. Translational scissors congruences; Chapter 5. Euclidean scissors congruences; Chapter 6. Sydler's theorem and non-commutative differential forms; Chapter 7. Spherical scissors congruences; Chapter 8. Hyperbolic scissors congruence; Chapter 9. Homology of Lie groups made discrete; Chapter 10. Invariants; Chapter 11. Simplices in spherical and hyperbolic 3-space; Chapter 12. Rigidity of Cheeger-Chern-Simons invariants 327 $aChapter 13. Projective configurations and homology of the projective linear groupChapter 14. Homology of indecomposable configurations; Chapter 15. The case of PGl(3,F); Appendix A. Spectral sequences and bicomplexes; Bibliography; Index 330 $aThese lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of gr 410 0$aNankai tracts in mathematics ;$vv. 1. 606 $aTetrahedra 606 $aVolume (Cubic content) 606 $aCharacteristic classes 608 $aElectronic books. 615 0$aTetrahedra. 615 0$aVolume (Cubic content) 615 0$aCharacteristic classes. 676 $a516.23 700 $aDupont$b Johan L$055031 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454401303321 996 $aScissors congruences, group homology and characteristic classes$92255458 997 $aUNINA