LEADER 05331nam 2200649Ia 450 001 9910454400803321 005 20200520144314.0 010 $a1-281-95180-3 010 $a9786611951801 010 $a981-281-029-3 035 $a(CKB)1000000000538064 035 $a(EBL)1681469 035 $a(SSID)ssj0000139820 035 $a(PQKBManifestationID)11134439 035 $a(PQKBTitleCode)TC0000139820 035 $a(PQKBWorkID)10050963 035 $a(PQKB)11337149 035 $a(MiAaPQ)EBC1681469 035 $a(WSP)00004610 035 $a(Au-PeEL)EBL1681469 035 $a(CaPaEBR)ebr10255910 035 $a(CaONFJC)MIL195180 035 $a(OCoLC)815754732 035 $a(EXLCZ)991000000000538064 100 $a20010907d2001 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe discrete fourier transform$b[electronic resource] $etheory, algorithms and applications /$fD. Sundararajan 210 $aSingapore ;$aRiver Edge, NJ $cWorld Scientific$dc2001 215 $a1 online resource (392 p.) 300 $aDescription based upon print version of record. 311 $a981-02-4521-1 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Abbreviations; Chapter 1 Introduction; 1.1 The Transform Method; 1.2 The Organization of this Book; Chapter 2 The Discrete Sinusoid; 2.1 Signal Representation; 2.2 The Discrete Sinusoid; 2.3 Summary and Discussion; Chapter 3 The Discrete Fourier Transform; 3.1 The Fourier Analysis and Synthesis of Waveforms; 3.2 The DFT and the IDFT; 3.3 DFT Representation of Some Signals; 3.4 Direct Computation of the DFT; 3.5 Advantages of Sinusoidal Representation of Signals; 3.6 Summary; Chapter 4 Properties of the DFT; 4.1 Linearity; 4.2 Periodicity 327 $a4.3 Circular Shift of a Time Sequence 4.4 Circular Shift of a Spectrum; 4.5 Time-Reversal Property; 4.6 Symmetry Properties; 4.7 Transform of Complex Conjugates; 4.8 Circular Convolution and Correlation; 4.9 Sum and Difference of Sequences; 4.10 Padding the Data with Zeros; 4.11 Parseval's Theorem; 4.12 Summary; Chapter 5 Fundamentals of the PM DFT Algorithms; 5.1 Vector Format of the DFT; 5.2 Direct Computation of the DFT with Vectors; 5.3 Vector Format of the IDFT; 5.4 The Computation of the IDFT; 5.5 Fundamentals of the PM DIT DFT Algorithms; 5.6 Fundamentals of the PM DIF DFT Algorithms 327 $a5.7 The Classification of the PM DFT Algorithms 5.8 Summary; Chapter 6 The u X 1 PM DFT Algorithms; 6.1 The u x 1 PM DIT DFT Algorithms; 6.2 The 2 x 1 PM DIT DFT Algorithm; 6.3 Reordering of the Input Data; 6.4 Computation of a Single DFT Coefficient; 6.5 The u x 1 PM DIF DFT Algorithms; 6.6 The 2 x 1 PM DIF DFT Algorithm; 6.7 Computational Complexity of the 2 x 1 PM DFT Algorithms; 6.8 The 6 x 1 PM DIT DFT Algorithm; 6.9 Flow Chart Description of the 2 x 1 PM DIT DFT Algorithm; 6.10 Summary; Chapter 7 The 2 x 2 PM DFT Algorithms; 7.1 The 2 x 2 PM DIT DFT Algorithm 327 $a7.2 The 2 x 2 PM DIF DFT Algorithm 7.3 Computational Complexity of the 2 x 2 PM DFT Algorithms; 7.4 Summary; Chapter 8 DFT Algorithms for Real Data - I; 8.1 The Direct Use of an Algorithm for Complex Data; 8.2 Computation of the DFTs of Two Real Data Sets at a Time; 8.3 Computation of the DFT of a Single Real Data Set; 8.4 Summary; Chapter 9 DFT Algorithms for Real Data - II; 9.1 The Storage of Data in PM RDFT and RIDFT Algorithms; 9.2 The 2 x 1 PM DIT RDFT Algorithm; 9.3 The 2 x 1 PM DIF RIDFT Algorithm; 9.4 The 2 x 2 PM DIT RDFT Algorithm; 9.5 The 2 x 2 PM DIF RIDFT Algorithm 327 $a9.6 Summary and Discussion Chapter 10 Two-Dimensional Discrete Fourier Transform; 10.1 The 2-D DFT and IDFT; 10.2 DFT Representation of Some 2-D Signals; 10.3 Computation of the 2-D DFT; 10.4 Properties of the 2-D DFT; 10.5 The 2-D PM DFT Algorithms; 10.6 Summary; Chapter 11 Aliasing and Other Effects; 11.1 Aliasing Effect; 11.2 Leakage Effect; 11.3 Picket-Fence Effect; 11.4 Summary and Discussion; Chapter 12 The Continuous-Time Fourier Series; 12.1 The 1-D Continuous-Time Fourier Series; 12.2 The 2-D Continuous-Time Fourier Series; 12.3 Summary 327 $aChapter 13 The Continuous-Time Fourier Transform 330 $aThis authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and 606 $aFourier transformations 606 $aMathematical physics 608 $aElectronic books. 615 0$aFourier transformations. 615 0$aMathematical physics. 676 $a530.15/5723 700 $aSundararajan$b D$0909958 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454400803321 996 $aThe discrete fourier transform$92036528 997 $aUNINA