LEADER 02638nam 2200649Ia 450 001 9910454346503321 005 20200520144314.0 010 $a1-282-19698-7 010 $a9786612196980 010 $a3-11-915945-X 010 $a3-11-020824-5 024 7 $a10.1515/9783110208245 035 $a(CKB)1000000000691523 035 $a(EBL)364731 035 $a(OCoLC)476197368 035 $a(SSID)ssj0000258280 035 $a(PQKBManifestationID)11209740 035 $a(PQKBTitleCode)TC0000258280 035 $a(PQKBWorkID)10257130 035 $a(PQKB)10716157 035 $a(MiAaPQ)EBC364731 035 $a(DE-B1597)34862 035 $a(OCoLC)703226792 035 $a(DE-B1597)9783110208245 035 $a(Au-PeEL)EBL364731 035 $a(CaPaEBR)ebr10256444 035 $a(CaONFJC)MIL219698 035 $a(EXLCZ)991000000000691523 100 $a20080404d2008 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTheory of uniform approximation of functions by polynomials$b[electronic resource] /$fVladislav K. Dzyadyk, Igor A. Shevchuk 210 $aBerlin ;$aNew York $cWalter De Gruyter$dc2008 215 $a1 online resource (496 p.) 300 $aDescription based upon print version of record. 311 $a3-11-020147-X 320 $aIncludes bibliographical references (p. [437]-477) and index. 327 $t Frontmatter -- $tContents -- $tChapter 1. Chebyshev theory and its development -- $tChapter 2. Weierstrass theorems -- $tChapter 3. On smoothness of functions -- $tChapter 4. Extension -- $tChapter 5. Direct theorems on the approximation of periodic functions -- $tChapter 6. Inverse theorems on the approximation of periodic functions -- $tChapter 7. Approximation by polynomials -- $t Backmatter 330 $aA thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions. 606 $aApproximation theory 606 $aFunctional analysis 608 $aElectronic books. 615 0$aApproximation theory. 615 0$aFunctional analysis. 676 $a511/.4 700 $aDzi?adyk$b Vladislav Kirillovich$01044959 701 $aShevchuk$b Igor A$01044960 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454346503321 996 $aTheory of uniform approximation of functions by polynomials$92470888 997 $aUNINA