LEADER 03177nam 22006014a 450 001 9910454295503321 005 20200520144314.0 010 $a1-281-93563-8 010 $a9786611935634 010 $a981-279-521-9 035 $a(CKB)1000000000537829 035 $a(DLC)2004269154 035 $a(StDuBDS)AH24685168 035 $a(SSID)ssj0000127202 035 $a(PQKBManifestationID)11936900 035 $a(PQKBTitleCode)TC0000127202 035 $a(PQKBWorkID)10051708 035 $a(PQKB)10571981 035 $a(MiAaPQ)EBC1681529 035 $a(WSP)00005273 035 $a(PPN)18135621X 035 $a(Au-PeEL)EBL1681529 035 $a(CaPaEBR)ebr10255679 035 $a(CaONFJC)MIL193563 035 $a(OCoLC)815752525 035 $a(EXLCZ)991000000000537829 100 $a20040205d2003 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCompletely positive matrices$b[electronic resource] /$fAbraham Berman, Naomi Shaked-Monderer 210 $a[River Edge] New Jersey $cWorld Scienfic$dc2003 215 $a1 online resource (ix, 206 p. ) $cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-238-368-9 320 $aIncludes bibliographical references (p. 193-197) and index. 327 $ach. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? 330 $aA real matrix is positive semidefinite if it can be decomposed as A=BB[symbol]. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB[symbol] is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. 606 $aMatrices 608 $aElectronic books. 615 0$aMatrices. 676 $a512.9/434 700 $aBerman$b Abraham$042972 701 $aShaked-Monderer$b Naomi$0906214 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454295503321 996 $aCompletely positive matrices$92026800 997 $aUNINA