LEADER 04076nam 2200601 a 450 001 9910454094903321 005 20210705075711.0 010 $a1-281-92818-6 010 $a9786611928186 010 $a981-277-548-X 035 $a(CKB)1000000000537901 035 $a(DLC)2003273259 035 $a(StDuBDS)AH24684589 035 $a(SSID)ssj0000159814 035 $a(PQKBManifestationID)11151677 035 $a(PQKBTitleCode)TC0000159814 035 $a(PQKBWorkID)10181778 035 $a(PQKB)11115538 035 $a(MiAaPQ)EBC1681571 035 $a(WSP)00005276 035 $a(Au-PeEL)EBL1681571 035 $a(CaPaEBR)ebr10255826 035 $a(CaONFJC)MIL192818 035 $a(OCoLC)879025452 035 $a(EXLCZ)991000000000537901 100 $a20030818d2003 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFundamentals in hadronic atom theory$b[electronic resource] /$fA. Deloff 210 $aRiver Edge, N.J. $cWorld Scientific$dc2003 215 $a1 online resource (xv, 352 p. )$cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-238-371-9 320 $aIncludes bibliographical references (p. 341-347) and index. 327 $apt. I. Theoretical background -- 1. Hadronic atoms - an overview -- 2. Extended quantum mechanical framework -- 3. Coulomb wave functions -- 4. Coulomb propagator and scattering operators -- 5. Two-potential scattering formalism -- 6. Bound states and low-energy scattering. 6.1. Effective range approximation. 6.2. Nuclear and quasi-nuclear bound states -- 7. Atomic spectrum. 7.1. Real nuclear potentials -- 7.2. Complex nuclear potential -- 7.3. Small Shift Approximation (SSA) -- 8. Gamow states and completeness problem -- 8.1. Normalization of Gamow states -- 8.2. Completeness problem -- 9. X-Ray transition rate -- 10. Computational methods -- 10.1. The matching method. 10.2. variational methods. 10.3. Fredholm integral equation method. 10.4. Momentum space methods -- 11. Examples. 11.1. Rank-one separable potential. 11.2. Delta-shell potential. 11.3. Square-well potential. 11.4. Cut-off Coulomb potential. 11.5. Bound states in extended-charge Coulomb potential -- 12. Chiral theory primer. 12.1. Quantum mechanics: zero-range potential. 12.2. Effective field theory approach. 12.3. Chiral perturbation theory -- pt. II. Comparison with experiment -- 13. Two-meson atomic bound states. 13.1. Pionium. 13.2. K[symbol] atom. 13.3. Kaonium -- 14. Hadronic hydrogen. 14.1. Pionic hydrogen. 14.2. Kaonic hydrogen. 14.3. Antiprotonic hydrogen -- 15. Hadronic deuterium. 15.1. Pionic deuterium. 15.2. Kaonic deuterium. 15.3. Antiprotonic deuterium -- 16. Hadronic atoms with A [symbol] 4 -- 16.1. Hadron-nucleus effective potential. 16.2. Pionic atoms. 16.3. Kaonic atoms. 16.4. Antiprotonic atoms. 16.5. [symbol][symbol] atoms. 16.6. Deeply bound pionic atoms. 330 $aHadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good knowledge of quantum mechanics and familiarity with nuclear physics are presupposed. 606 $aHadrons 606 $aParticles (Nuclear physics) 608 $aElectronic books. 615 0$aHadrons. 615 0$aParticles (Nuclear physics) 676 $a539.7/216 700 $aDeloff$b A$0931940 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454094903321 996 $aFundamentals in hadronic atom theory$92096210 997 $aUNINA