LEADER 01625oam 2200505zu 450 001 9910453955003321 005 20210721054655.0 010 $a1-282-16210-1 010 $a9786612162107 010 $a90-272-9767-3 035 $a(CKB)1000000000551112 035 $a(SSID)ssj0000284782 035 $a(PQKBManifestationID)11222608 035 $a(PQKBTitleCode)TC0000284782 035 $a(PQKBWorkID)10262632 035 $a(PQKB)10972492 035 $a(MiAaPQ)EBC623208 035 $a(EXLCZ)991000000000551112 100 $a20160829d2001 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 00$aText Representation: Linguistic and Psycholinguistic Aspects 210 31$a[Place of publication not identified]$cJohn Benjamins Publishing Company$d2001 225 0 $aHuman cognitive processing Text representation 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-58811-077-X 311 $a90-272-2360-2 606 $aDiscourse analysis$xPsychological aspects$vCongresses 606 $aPhilology & Linguistics$2HILCC 606 $aLanguages & Literatures$2HILCC 615 0$aDiscourse analysis$xPsychological aspects 615 7$aPhilology & Linguistics 615 7$aLanguages & Literatures 676 $a401/.41 700 $aSanders$b Ted J.M$0912987 702 $aSanders$b Ted 702 $aSchilperoord$b Joost 702 $aSpooren$b Wilbert 801 0$bPQKB 906 $aBOOK 912 $a9910453955003321 996 $aText Representation: Linguistic and Psycholinguistic Aspects$92045106 997 $aUNINA LEADER 02453nam 2200541 450 001 9910555108103321 005 20230126221332.0 010 $a1-119-42272-8 010 $a1-119-42273-6 010 $a1-119-42271-X 035 $a(CKB)4100000009184939 035 $a(MiAaPQ)EBC5892451 035 $a(OCoLC-P)1123181408 035 $a(CaSebORM)9781119422709 035 $a(OCoLC)1123181408 035 $a(EXLCZ)994100000009184939 100 $a20191007d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStructural equation modeling $eapplications using Mplus /$fJichuan Wang, Xiaoqian Wang 205 $aSecond edition. 210 1$aHoboken, New Jersey ;$aChichester, West Sussex, England :$cWiley,$d[2020] 210 4$dİ2020 215 $a1 online resource (537 pages) 225 0 $aWiley series in probability and statistics 311 $a1-119-42270-1 320 $aIncludes bibliographical references and index. 327 $aConfirmatory factor analysis -- Structural equation model -- Latent growth models (LGM) for longitudinal data analysis -- Multi-group modeling -- Mixture modeling -- Sample size for structural equation modeling. 330 $aDiscusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this second edition, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book"--$cProvided by publisher 606 $aStructural equation modeling$xData processing 606 $aMultivariate analysis$xData processing 606 $aSocial sciences$xStatistical methods$xData processing 615 0$aStructural equation modeling$xData processing. 615 0$aMultivariate analysis$xData processing. 615 0$aSocial sciences$xStatistical methods$xData processing. 676 $a300.285 700 $aWang$b Jichuan$0960180 702 $aWang$b Xiaoqian 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555108103321 996 $aStructural equation modeling$92818973 997 $aUNINA