LEADER 05162nam 2200661Ia 450 001 9910453710003321 005 20200520144314.0 010 $a1-281-96090-X 010 $a9786611960902 010 $a981-281-229-6 035 $a(CKB)1000000000551137 035 $a(EBL)1193541 035 $a(SSID)ssj0000312417 035 $a(PQKBManifestationID)12083627 035 $a(PQKBTitleCode)TC0000312417 035 $a(PQKBWorkID)10331560 035 $a(PQKB)10001086 035 $a(MiAaPQ)EBC1193541 035 $a(WSP)00001982 035 $a(Au-PeEL)EBL1193541 035 $a(CaPaEBR)ebr10698841 035 $a(CaONFJC)MIL196090 035 $a(OCoLC)316005566 035 $a(EXLCZ)991000000000551137 100 $a20081008d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUniversality in nonequilibrium lattice systems$b[electronic resource] $etheoretical foundations /$fGeza Odor 210 $aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (296 p.) 300 $aDescription based upon print version of record. 311 $a981-281-227-X 320 $aIncludes bibliographical references (p. 249-269) and index. 327 $a1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol] > 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n < m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n < m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]? classes. 6.2. AA[symbol]?, BB[symbol]? with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]?(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]? system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook. 330 $aUniversal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic m 606 $aScaling laws (Statistical physics) 606 $aLattice theory 606 $aSelf-organizing systems 606 $aPhase transformations (Statistical physics) 606 $aDifferentiable dynamical systems 608 $aElectronic books. 615 0$aScaling laws (Statistical physics) 615 0$aLattice theory. 615 0$aSelf-organizing systems. 615 0$aPhase transformations (Statistical physics) 615 0$aDifferentiable dynamical systems. 676 $a530.15/95 700 $aOdor$b Geza$0996100 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910453710003321 996 $aUniversality in nonequilibrium lattice systems$92282746 997 $aUNINA