LEADER 03087nam 2200697Ia 450 001 9910453283703321 005 20200520144314.0 010 $a6611733337 010 $a1-281-73333-4 010 $a9786611733339 010 $a1-60750-298-4 010 $a600-00-0346-3 010 $a1-4337-1131-1 035 $a(CKB)1000000000554071 035 $a(EBL)334196 035 $a(OCoLC)437202842 035 $a(SSID)ssj0000289022 035 $a(PQKBManifestationID)11221425 035 $a(PQKBTitleCode)TC0000289022 035 $a(PQKBWorkID)10386010 035 $a(PQKB)10753325 035 $a(MiAaPQ)EBC334196 035 $a(Au-PeEL)EBL334196 035 $a(CaPaEBR)ebr10216841 035 $a(CaONFJC)MIL173333 035 $a(EXLCZ)991000000000554071 100 $a20071215d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApproximation methods for efficient learning of Bayesian networks$b[electronic resource] /$fCarsten Riggelsen 210 $aAmsterdam ;$aWashington, DC $cIOS Press$dc2008 215 $a1 online resource (148 p.) 225 1 $aFrontiers in artificial intelligence and applications ;$vv. 168 225 1 $aDissertations in artificial intelligence 300 $aDescription based upon print version of record. 311 $a1-58603-821-4 320 $aIncludes bibliographical references (p. [133]-137). 327 $aTitle page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References 330 $aThis publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order t 410 0$aFrontiers in artificial intelligence and applications.$pDissertations in artificial intelligence. 410 0$aFrontiers in artificial intelligence and applications ;$vv. 168. 606 $aBayesian statistical decision theory 606 $aMachine learning 606 $aNeural networks (Computer science) 608 $aElectronic books. 615 0$aBayesian statistical decision theory. 615 0$aMachine learning. 615 0$aNeural networks (Computer science) 676 $a519.5 676 $a519.5/42 700 $aRiggelsen$b Carsten$0967219 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910453283703321 996 $aApproximation methods for efficient learning of Bayesian networks$92195731 997 $aUNINA