LEADER 01429nam0 22003253i 450 001 SUN0089255 005 20130805102356.352 020 $aIT$b1518 100 $a20120523d1969 |0latc50 ba 101 $alat 102 $aDE 105 $a|||| ||||| 200 1 $aT. Lucreti Cari De rerum natura$elibri sex$fquintum recensuit Joseph Martin 210 $aLipsiae$cin aedibus B. G. Teubneri$d1969 215 $aXXVI, 285 p.$d21 cm. 410 1$1001SUN0044566$12001 $aBibliotheca scriptorum Graecorum et Romanorum Teubneriana. - Leipzig$eTeubner. - Il luogo di pubblicazione varia nel tempo. 500 1$3SUN0079015$aDe rerum natura.$913270 620 $dLeipzig$3SUNL001016 700 1$aLucretius Carus$b, Titus$3SUNV024950$071848 702 1$aMartin$b, Josef$3SUNV072968 712 $aTeubner$3SUNV001800$4650 790 0$aLucrezio$zLucretius Carus, Titus$3SUNV052859 790 1$aLucrezio Caro, Tito$zLucretius Carus, Titus$3SUNV052860 790 0$aLucretius, Titus Carus$zLucretius Carus, Titus$3SUNV075674 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0089255 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00 CONS XVIII.M.3 $e00 234894 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$h234894$kCONS XVIII.M.3$op$qa 996 $aDe rerum natura$913270 997 $aUNICAMPANIA LEADER 03076nam 2200589Ia 450 001 9910453187603321 005 20200520144314.0 010 $a1-281-95631-7 010 $a9786611956318 010 $a981-281-065-X 035 $a(CKB)1000000000538105 035 $a(StDuBDS)AH24685565 035 $a(SSID)ssj0000182601 035 $a(PQKBManifestationID)11178056 035 $a(PQKBTitleCode)TC0000182601 035 $a(PQKBWorkID)10172683 035 $a(PQKB)10037072 035 $a(MiAaPQ)EBC1681611 035 $a(WSP)00004361 035 $a(Au-PeEL)EBL1681611 035 $a(CaPaEBR)ebr10255504 035 $a(CaONFJC)MIL195631 035 $a(OCoLC)815755944 035 $a(EXLCZ)991000000000538105 100 $a20001122d2001 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to gauge integrals$b[electronic resource] /$fCharles Swartz 210 $aSingapore ;$aRiver Edge, N.J. $cWorld Scientific$dc2001 215 $a1 online resource (150p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-02-4239-5 320 $aIncludes bibliographical references (p. 149-153) and index. 327 $aIntroduction to the gauge or Henstock-Kurzweil integral; basic properties of the gauge integral; Henstock's Lemma and improper integrals; the gauge integral over unbounded intervals; convergence theorems; integration over more general sets -Lebesgue measure; the space of gauge integrable functions; multiple integrals and Fubini's theorem; the McShane integral; McShane integrability is equivalent to absolute Henstock-Kurzweil integrability. 330 8 $aA presentation of the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. A basic knowledge of introductory real analysis is required of the reader.$bThis book presents the Henstock-Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock-Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces.;A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc. 606 $aHenstock-Kurzweil integral 606 $aCalculus 608 $aElectronic books. 615 0$aHenstock-Kurzweil integral. 615 0$aCalculus. 676 $a515/.43 700 $aSwartz$b Charles$f1938-$054079 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910453187603321 996 $aIntroduction to gauge integrals$92108889 997 $aUNINA