LEADER 05146nam 2200565Ia 450 001 9910452953803321 005 20200520144314.0 010 $a0-486-15232-4 010 $a1-4593-0545-0 035 $a(CKB)1000000000521174 035 $a(EBL)1909571 035 $a(MiAaPQ)EBC3050259 035 $a(MiAaPQ)EBC3246211 035 $a(Au-PeEL)EBL3050259 035 $a(CaPaEBR)ebr10147224 035 $a(OCoLC)922950979 035 $a(EXLCZ)991000000000521174 100 $a19971216e19981987 uy 0 101 0 $aeng 135 $aur|n|---||||| 200 12$aA mathematical history of the golden number$b[electronic resource] /$fRoger Herz-Fischler 205 $aDover ed. 210 $aMineola, N.Y. $cDover Publications$d1998 215 $a1 online resource (738 p.) 225 1 $aDover Books on Mathematics 300 $aOriginally published: A mathematical history of division in extreme and mean ratio. Waterloo, Ont., Canada : Wilfrid Laurier University Press, c1987. 300 $a"Incorporates ... a new preface and a section of 'Corrections and additions,' both prepared specially for this edition by the author"--T.p. verso. 311 $a0-486-40007-7 320 $aIncludes bibliographical references (p. 180-195). 327 $aCover; Title Page; Copyright Page; Contents; Preface to the Dover Edition; Foreword; A Guide for Readers; A. Internal Organization; B. Bibliographical Details; C. Abbreviations; D. Symbols; E. Dates; F. Quotations from Primary Sources; Introduction; Chapter I. The Euclidean Text; Section 1. The Text; Section 2. An Examination of the Euclidean Text; A. Preliminary Observations; B. A Proposal Concerning the Origin of DEMR; C. Theorem XIII,8; D. Theorems XIII,1-5; E. Stages in the Development of DEMR in Book XIII; Chapter II. Mathematical Topics; Section 3. Complements and the Gnomon 327 $aSection 4. Transformation of AreasSection 5. Geometrical Algebra, Application of Areas, and Solutions of Equations; A. Geometrical Algebra-Level 1; B. Geometrical Algebra-Level 2; C. Application of Areas-Level 3; D. Historical References; E. Setting Out the Debate; F. Other Interpretations in Terms of Equations; G. Problems in Interpretation; H. Division of Figures; I. Theorems VI,28,29 vs 11,5,6; J. Euclid's Data; K. Theorem II,11; L. II,11-Application of Areas, Various Views; i. Szabo?; ii. Junge; iii. Valabrega-Gibellato; Section 6. Side and Diagonal Numbers; Section 7. Incommensurability 327 $aSection 8. The Euclidean Algorithm, Anthyphairesis, and Continued FractionsChapter III. Examples of The Pentagon, Pentagram, and Dodecahedron Before -400; Section 9. Examples before Pythagoras (before c. -550); A. Prehistoric Egypt; B. Prehistoric Mesopotamia; C. Sumerian and Akkadian Cuneiform Ideograms; i. Fuy?e's Theory; D. A Babylonian Approximation for the Area of the Pentagon; i. Stapleton's Theory; E. Palestine; Section 10. From Pythagoras until -400; A. Vases from Greece and its Italian Colonies , Etruria (Italy); B. Shield Devices on Vases; C. Coins; D. Dodecahedra 327 $aE. Additional MaterialConclusions; Chapter IV. The Pythagoreans; i. Pythagoras; ii. Hippasus; iii. Hippocrates of Chios; iv. Theodorus of Cyrene; v. Archytas; Section 11. Ancient References to the Pythagoreans; A. The Pentagram as a Symbol of the Pythagoreans; B. The Pythagoreans and the Construction of the Dodecahedron; C. Other References to the Pythagoreans; Section 12. Theories Linking DEMR with the Pythagoreans; i. The Pentagram; ii. Scholia Assigning Book IV to the Pythagoreans; iii. Equations and Application of Areas; iv. The Dodecahedron 327 $av. A Marked Straight-Edge Construction of the Pentagonvi. A Gnomon Theory; vii. Allman's Theory: The Discovery of Incommensurability; viii. Fritz-Junge Theory: The Discovery of Incommensurability; ix. Heller's Theory: The Discovery of DEMR; x. Neuenschwander's Analysis; xi. Stapleton; Chapter V. Miscellaneous Theories; Section 13. Miscellaneous Theories; i. Michel; ii. Fowler: An Anthyphairesis Development of DEMR; iii. Knorr: Anthyphairesis and DEMR; iv. Itard: Theorem IX,15; Section 14. Theorems XIII,1-5; i. Bretschneider; ii. Allman; iii. Michel; iv. Dijksterhuis and Van der Waerden 327 $av. Lasserre 330 $a