LEADER 05165nam 2200637 a 450 001 9910452709403321 005 20200520144314.0 010 $a1-299-47288-5 010 $a0-12-386546-8 035 $a(CKB)2550000001019801 035 $a(EBL)1170131 035 $a(OCoLC)850222091 035 $a(SSID)ssj0000906907 035 $a(PQKBManifestationID)11553700 035 $a(PQKBTitleCode)TC0000906907 035 $a(PQKBWorkID)10856286 035 $a(PQKB)11667781 035 $a(MiAaPQ)EBC1170131 035 $a(PPN)176639446 035 $a(Au-PeEL)EBL1170131 035 $a(CaPaEBR)ebr10689298 035 $a(CaONFJC)MIL478538 035 $a(EXLCZ)992550000001019801 100 $a20130502d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEnhanced oil recovery field case studies$b[electronic resource] /$fJames J. Sheng 210 $aWaltham, Mass. $cElsevier$d2013 215 $a1 online resource (710 p.) 300 $aDescription based upon print version of record. 311 $a0-12-386545-X 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Enhanced Oil Recovery Field Case Studies; Copyright Page; Contents; Preface; Contributors; Acknowledgments; 1 Gas Flooding; 1.1 What Is Gas Flooding?; 1.2 Gas Flood Design; 1.3 Technical and Economic Screening Process; 1.4 Gas Injection Design and WAG; 1.5 Phase Behavior; 1.5.1 Standard (or Basic) PVT Data; 1.5.2 Swelling Test; 1.5.3 Slim-Tube Test; 1.5.4 Multicontact Test; 1.5.5 Fluid Characterization Using an Equation-of-State; 1.6 MMP and Displacement Mechanisms; 1.6.1 Simplified Ternary Representation of Displacement Mechanisms 327 $a1.6.2 Displacement Mechanisms for Field Gas Floods1.6.3 Determination of MMP; 1.7 Field Cases; 1.7.1 Slaughter Estate Unit CO2 Flood; 1.7.2 Immiscible Weeks Island Gravity Stable CO2 Flood; 1.7.3 Jay Little Escambia Creek Nitrogen Flood; 1.7.4 Overview of Field Experience; 1.8 Concluding Remarks; Abbreviations; References; 2 Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and Field Applications; 2.1 Foam Fundamentals; 2.1.1 Why CO2 Is so Popular in Recent Years?; 2.1.2 Why CO2 Is of Interest Compared to Other Gases?; 2.1.3 Why CO2 Is Injected as Foams? 327 $a2.1.4 Foam in Porous Media: Creation and Coalescence Mechanisms2.1.5 Foam in Porous Media: Three Foam States and Foam Generation; 2.1.6 Foam in Porous Media: Two Strong-Foam Regimes-High-Quality and Low-Quality Regimes; 2.1.7 Modeling Foams in Porous Media; 2.1.8 Foam Injection Methods and Gravity Segregation; 2.1.9 CO2-Foam Coreflood Experiments; 2.1.10 Effect of Subsurface Heterogeneity-Limiting Capillary Pressure and Limiting Water Saturation; 2.1.11 Foam-Oil Interactions; 2.2 Foam Field Applications; 2.2.1 The First Foam Field Applications, Siggins Field, Illinois 327 $a2.2.2 Steam Foam EOR, Midway Sunset Field, California2.2.3 CO2/N2 Foam Injection in Wilmington, California (1984); 2.2.4 CO2-Foam Injection in Rock Creek, Virginia (1984-1985); 2.2.5 CO2-Foam Injection in Rangely Weber Sand Unit, Colorado (1988-1990); 2.2.6 CO2-Foam Injection in North Ward-Estes, Texas (1990-1991); 2.2.7 CO2-Foam Injection in the East Vacuum Grayburg/San Andres Unit, New Mexico (1991-1993); 2.2.8 CO2-Foam Injection in East Mallet Unit, Texas, and McElmo Creek Unit, Utah (1991-1994); 2.3 Typical Field Responses During CO2-Foam Applications 327 $a2.3.1 Diversion from High- to Low-Permeability Layers2.3.2 Typical Responses from Successful SAG Processes; 2.3.3 Typical Responses from Successful Surfactant-Gas Coinjection Processes; 2.4 Conclusions; Acknowledgment; Appendix-Expression of Gas-Mobility Reduction in the Presence of Foams; References; 3 Polymer Flooding-Fundamentals and Field Cases; 3.1 Polymers Classification; 3.2 Polymer Solution Viscosity; 3.2.1 Salinity and Concentration Effects; 3.2.2 Shear Effect; 3.2.3 pH Effect; 3.3 Polymer Flow Behavior in Porous Media; 3.3.1 Polymer Viscosity in Porous Media; 3.3.2 Polymer Retention 327 $a3.3.3 Inaccessible Pore Volume 330 $a Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, ""smart water""-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applicatio 606 $aOil fields 606 $aGas fields 608 $aElectronic books. 615 0$aOil fields. 615 0$aGas fields. 676 $a622.33827 700 $aSheng$b James J$0931361 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910452709403321 996 $aEnhanced oil recovery field case studies$92095127 997 $aUNINA