LEADER 03285nam 22006732 450 001 9910452678503321 005 20151005020621.0 010 $a1-139-88898-6 010 $a1-139-57957-6 010 $a1-139-56919-8 010 $a1-139-57275-X 010 $a1-139-57352-7 010 $a1-139-57100-1 010 $a1-139-13711-5 010 $a1-283-63871-1 010 $a1-139-57009-9 035 $a(CKB)2550000000707814 035 $a(EBL)1025050 035 $a(OCoLC)812481755 035 $a(SSID)ssj0000722724 035 $a(PQKBManifestationID)11956207 035 $a(PQKBTitleCode)TC0000722724 035 $a(PQKBWorkID)10699315 035 $a(PQKB)11364367 035 $a(UkCbUP)CR9781139137119 035 $a(MiAaPQ)EBC1025050 035 $a(Au-PeEL)EBL1025050 035 $a(CaPaEBR)ebr10608423 035 $a(CaONFJC)MIL395117 035 $a(EXLCZ)992550000000707814 100 $a20110815d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics of two-dimensional turbulence /$fSergei Kuksin, Armen Shirikyan$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xvi, 320 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v194 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-02282-7 320 $aIncludes bibliographical references and index. 327 $aPreliminaries -- Two-dimensional Navier-Stokes equations -- Uniqueness of stationary measure and mixing -- Ergodicity and limiting theorems -- Inviscid limit -- Miscellanies. 330 $aThis book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) - proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces. 410 0$aCambridge tracts in mathematics ;$v194. 606 $aHydrodynamics$xStatistical methods 606 $aTurbulence$xMathematics 615 0$aHydrodynamics$xStatistical methods. 615 0$aTurbulence$xMathematics. 676 $a532/.052701519 700 $aKuksin$b Sergej B.$f1955-$060265 702 $aShirikyan$b Armen 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452678503321 996 $aMathematics of two-dimensional turbulence$92474539 997 $aUNINA