LEADER 05902nam 22006972 450 001 9910452665503321 005 20151005020621.0 010 $a1-316-08958-4 010 $a1-139-57945-2 010 $a1-139-57343-8 010 $a1-139-57263-6 010 $a1-139-05996-3 010 $a1-139-57088-9 010 $a1-139-56907-4 010 $a1-283-63864-9 010 $a1-139-56997-X 035 $a(CKB)2550000000707807 035 $a(EBL)1025036 035 $a(OCoLC)813396628 035 $a(SSID)ssj0000722027 035 $a(PQKBManifestationID)11489670 035 $a(PQKBTitleCode)TC0000722027 035 $a(PQKBWorkID)10694134 035 $a(PQKB)11010100 035 $a(UkCbUP)CR9781139059961 035 $a(MiAaPQ)EBC1025036 035 $a(Au-PeEL)EBL1025036 035 $a(CaPaEBR)ebr10608460 035 $a(CaONFJC)MIL395110 035 $a(EXLCZ)992550000000707807 100 $a20141103d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUnsteady combustor physics /$fTim C. Lieuwen$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xix, 405 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-01599-5 320 $aIncludes bibliographical references and index. 327 $aCover; UNSTEADY COMBUSTOR PHYSICS; Title; Copyright; Summary Contents; Detailed Contents; Introduction; References; Overview of the Book; 1 Overview and Basic Equations; 1.1. Thermodynamic Relations in a Multicomponent Perfect Gas; 1.2. Continuity Equation; 1.3. Momentum Equation; 1.4. Species Conservation Equation; 1.5. Energy Equation; 1.6. Nomenclature; 1.6.1. Latin Alphabet; 1.6.2. Greek Alphabet; 1.6.3. Subscripts; 1.6.4. Superscripts; 1.6.5. Other Symbols; Exercises; References; 2 Decomposition and Evolution of Disturbances; 2.1. Descriptions of Flow Perturbations 327 $a2.2. Small-Amplitude Propagation in Uniform, Inviscid Flows2.2.1. Decomposition Approach; 2.2.2. Comments on Decomposition; 2.2.3. Molecular Transport Effects on Decomposition; 2.3. Modal Coupling Processes; 2.3.1. Coupling through Boundary Conditions; 2.3.2. Coupling through Flow Inhomogeneities; 2.3.3. Coupling through Nonlinearities; 2.4. Energy Density and Energy Flux Associated with Disturbance Fields; 2.5. Linear and Nonlinear Stability of Disturbances; 2.5.1. Linearly Stable/Unstable Systems; 2.5.2. Nonlinearly Unstable Systems; 2.5.3. Forced and Limit Cycling Systems 327 $a2.5.3.1. Example: Forced Response of Lightly Damped, Linear Systems2.5.3.2. Example: Limit Cycling Systems; 2.5.3.3. Example: Forced Response of Limit Cycling Systems; 2.5.3.4. Nonlinear Interactions between Multiple Oscillators; Exercises; References; 3 Hydrodynamic Flow Stability I: Introduction; 3.1. Normal Modes in Parallel Flows: Basic Formulation; 3.2. General Results for Temporal Instability; 3.2.1. Necessary Conditions for Temporal Instability; 3.2.2. Growth Rate and Disturbance Propagation Speed Bounds; 3.3. Convective and Absolute Instability 327 $a3.4. Extended Example: Spatial Mixing Layer3.5. Global Stability and Nonparallel Flows; Exercises; References; 4 Hydrodynamic Flow Stability II: Common Combustor Flow Fields; 4.1. Free Shear Layers; 4.1.1. Flow Stability and Unsteady Structure; 4.1.2. Effects of Harmonic Excitation; 4.2. Wakes and Bluff Body Flow Fields; 4.2.1. Parallel Flow Stability Analysis; 4.2.2. Bluff Body Wake; 4.2.3. Separated Shear Layer; 4.2.4. Effects of Harmonic Excitation; 4.3. Jets; 4.3.1. Parallel Flow Stability Analysis; 4.3.2. Constant Density Jet Dynamics; 4.3.3. Effects of Harmonic Excitation 327 $a4.3.4. Jets in Cross Flow4.4. Swirling Jets and Wakes; 4.4.1. Vortex Breakdown; 4.4.2. Swirling Jet and Wake Dynamics; 4.4.3. Effects of Harmonic Excitation; 4.5. Backward-Facing Steps and Cavities; 4.5.1. Parallel Flow Stability Analysis; 4.5.2. Unsteady Flow Structure; 4.8. Exercises; References; 5 Acoustic Wave Propagation I - Basic Concepts; 5.1. Traveling and Standing Waves; 5.2. Boundary Conditions: Reflection Coefficients and Impedance; 5.3. Natural Modes of Simple Geometries; 5.3.1. One-Dimensional Modes; 5.3.2. Multidimensional Rectangular Duct Modes; 5.3.3. Circular Duct Modes 327 $a5.3.4. Lumped Elements and Helmholtz Resonators 330 $aDeveloping clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors. 606 $aGas-turbines$xCombustion 606 $aHeat$xTransmission$xMathematics 615 0$aGas-turbines$xCombustion. 615 0$aHeat$xTransmission$xMathematics. 676 $a621.43/3 700 $aLieuwen$b Timothy C.$0322719 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452665503321 996 $aUnsteady combustor physics$92461013 997 $aUNINA