LEADER 03403nam 22006612 450 001 9910452513803321 005 20151005020621.0 010 $a1-107-23802-1 010 $a1-107-25498-1 010 $a1-139-61121-6 010 $a1-139-61307-3 010 $a1-139-50572-6 010 $a1-139-62609-4 010 $a1-139-61679-X 010 $a1-283-89949-3 010 $a1-139-62237-4 035 $a(CKB)2550000000710941 035 $a(EBL)1099950 035 $a(OCoLC)823724187 035 $a(SSID)ssj0000784315 035 $a(PQKBManifestationID)11430900 035 $a(PQKBTitleCode)TC0000784315 035 $a(PQKBWorkID)10763859 035 $a(PQKB)11589262 035 $a(UkCbUP)CR9781139505727 035 $a(MiAaPQ)EBC1099950 035 $a(Au-PeEL)EBL1099950 035 $a(CaPaEBR)ebr10635758 035 $a(CaONFJC)MIL421199 035 $a(EXLCZ)992550000000710941 100 $a20120508d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSpectral theory and its applications /$fBernard Helffer, Universite? Paris-Sud$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (v, 255 pages) $cdigital, PDF file(s) 225 1 $aCambridge studies in advanced mathematics ;$v139 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-47167-2 311 $a1-107-03230-X 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: 1. Introduction; 2. Unbounded operators; 3. Representation theorems; 4. Semibounded operators; 5. Compact operators; 6. Spectral theory for bounded operators; 7. Applications in physics and PDE; 8. Spectrum for self-adjoint operators; 9. Essentially self-adjoint operators; 10. Discrete spectrum, essential spectrum; 11. The max-min principle; 12. An application to fluid mechanics; 13. Pseudospectra; 14. Applications for 1D-models; 15. Applications in kinetic theory; 16. Problems; References; Index. 330 $aBernard Helffer's graduate-level introduction to the basic tools in spectral analysis is illustrated by numerous examples from the Schro?dinger operator theory and various branches of physics: statistical mechanics, superconductivity, fluid mechanics and kinetic theory. The later chapters also introduce non self-adjoint operator theory with an emphasis on the role of the pseudospectra. The author's focus on applications, along with exercises and examples, enables readers to connect theory with practice so that they develop a good understanding of how the abstract spectral theory can be applied. The final chapter provides various problems that have been the subject of active research in recent years and will challenge the reader's understanding of the material covered. 410 0$aCambridge studies in advanced mathematics ;$v139. 517 3 $aSpectral Theory & its Applications 606 $aSpectral theory (Mathematics) 615 0$aSpectral theory (Mathematics) 676 $a515/.7222 700 $aHelffer$b Bernard$052445 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452513803321 996 $aSpectral theory and its applications$9833143 997 $aUNINA