LEADER 03378nam 22006612 450 001 9910452495103321 005 20151005020623.0 010 $a1-139-88724-6 010 $a1-107-08985-9 010 $a1-107-10172-7 010 $a1-107-10416-5 010 $a0-511-75362-4 010 $a1-107-09613-8 010 $a1-107-09306-6 035 $a(CKB)2550000001095237 035 $a(EBL)1179122 035 $a(OCoLC)850149014 035 $a(SSID)ssj0000834732 035 $a(PQKBManifestationID)11412027 035 $a(PQKBTitleCode)TC0000834732 035 $a(PQKBWorkID)10981603 035 $a(PQKB)10585482 035 $a(UkCbUP)CR9780511753626 035 $a(MiAaPQ)EBC1179122 035 $a(Au-PeEL)EBL1179122 035 $a(CaPaEBR)ebr10718044 035 $a(CaONFJC)MIL501984 035 $a(EXLCZ)992550000001095237 100 $a20100422d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHadamard Expansions and Hyperasymptotic Evaluation $ean Extension of the Method of Steepest Descents /$fR.B. Paris$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (viii, 243 pages) $cdigital, PDF file(s) 225 1 $aEncyclopedia of mathematics and its applications ;$vvolume 141 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-00258-3 311 $a1-299-70733-5 320 $aIncludes bibliographical references (p. 235-240) and index. 327 $aPreface; 1. Asymptotics of Laplace-type integrals; 2. Hadamard expansion of Laplace integrals; 3. Hadamard expansion of Laplace-type integrals; 4. Applications. 330 $aThe author describes the recently developed theory of Hadamard expansions applied to the high-precision (hyperasymptotic) evaluation of Laplace and Laplace-type integrals. This brand new method builds on the well-known asymptotic method of steepest descents, of which the opening chapter gives a detailed account illustrated by a series of examples of increasing complexity. A discussion of uniformity problems associated with various coalescence phenomena, the Stokes phenomenon and hyperasymptotics of Laplace-type integrals follows. The remaining chapters deal with the Hadamard expansion of Laplace integrals, with and without saddle points. Problems of different types of saddle coalescence are also discussed. The text is illustrated with many numerical examples, which help the reader to understand the level of accuracy achievable. The author also considers applications to some important special functions. This book is ideal for graduate students and researchers working in asymptotics. 410 0$aEncyclopedia of mathematics and its applications ;$vv. 141. 517 3 $aHadamard Expansions & Hyperasymptotic Evaluation 606 $aIntegral equations$xAsymptotic theory 606 $aAsymptotic expansions 615 0$aIntegral equations$xAsymptotic theory. 615 0$aAsymptotic expansions. 676 $a515/.45 700 $aParis$b R. B.$0441786 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452495103321 996 $aHadamard Expansions and Hyperasymptotic Evaluation$91905635 997 $aUNINA LEADER 01040nam0 2200361 450 001 9910341229103321 005 20220729090300.0 010 $a978-88-7075-950-1 100 $a20191030d2019----km y0itay50 ba 101 0 $aita 102 $aIT 105 $a 001yy 200 1 $aComunicare la cultura, oggi$fAndrea Maulini 210 $aMilano$cBibliografica$d2019 215 $a243 p.$cill.$d20 cm 225 1 $a<>mestieri della comunicazione 610 0 $aCultura$aDiffusione$aComunicazione$aRuolo di internet 676 $a306$v22$zita 676 $a302.23$v22$zita 700 1$aMaulini,$bAndrea$0768156 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910341229103321 952 $a306 MAU 2$b6592$fBFS952 952 $aII M 64$b2349/2019$fFSPBC 952 $a60 306 MAUA 2019$b590/2021$fFAGBC 952 $a302.23 MAUA 01$b2022/1333$fFLFBC 959 $aFLFBC 959 $aFAGBC 959 $aFSPBC 959 $aBFS 996 $aComunicare la cultura, oggi$91564449 997 $aUNINA